Advertisements
Advertisements
Question
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
Solution
\[\text{We have }, \]
\[f\left( x \right) = \sin x + \sqrt{3}\cos x\]
\[ \Rightarrow f'\left( x \right) = \cos x + \sqrt{3}\left( - \sin x \right)\]
\[ \Rightarrow f'\left( x \right) = \cos x - \sqrt{3}\sin x\]
\[\text { For } f\left( x \right) \text { to have maximum or minimum value, we must have } f'\left( x \right) = 0\]
\[ \Rightarrow cos x - \sqrt{3}sin x = 0\]
\[ \Rightarrow cos x = \sqrt{3}sin x\]
\[ \Rightarrow \cot x = \sqrt{3}\]
\[ \Rightarrow x = \frac{\pi}{6}\]
\[\text { Also }, f''\left( x \right) = -\text { sin } x - \sqrt{3}\cos x\]
\[ \Rightarrow f''\left( \frac{\pi}{6} \right) = - \sin\frac{\pi}{6} - \sqrt{3}\cos\frac{\pi}{6} = - \frac{1}{2} - \sqrt{3}\left( \frac{\sqrt{3}}{2} \right) = - \frac{1}{2} - \frac{3}{2} = - 2 < 0\]
\[\text { So, x } = \frac{\pi}{6} \text { is point of maxima } .\]
APPEARS IN
RELATED QUESTIONS
f(x) = 4x2 + 4 on R .
f(x) = - (x-1)2+2 on R ?
f(x)=| x+2 | on R .
f(x)=2x3 +5 on R .
f(x) = x3 \[-\] 1 on R .
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Find the maximum and minimum values of y = tan \[x - 2x\] .
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
Which of the following graph represents the extreme value:-