English

Prove that F(X) = Sinx + √ 3 Cosx Has Maximum Value at X = π 6 ? - Mathematics

Advertisements
Advertisements

Question

Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?

Sum

Solution

\[\text{We have }, \]

\[f\left( x \right) = \sin x + \sqrt{3}\cos x\]

\[ \Rightarrow f'\left( x \right) = \cos x + \sqrt{3}\left( - \sin x \right)\]

\[ \Rightarrow f'\left( x \right) = \cos x - \sqrt{3}\sin x\]

\[\text { For } f\left( x \right) \text { to have maximum or minimum value, we must have } f'\left( x \right) = 0\]

\[ \Rightarrow cos x - \sqrt{3}sin x = 0\]

\[ \Rightarrow cos x = \sqrt{3}sin x\]

\[ \Rightarrow \cot x = \sqrt{3}\]

\[ \Rightarrow x = \frac{\pi}{6}\]

\[\text { Also }, f''\left( x \right) = -\text {  sin } x - \sqrt{3}\cos x\]

\[ \Rightarrow f''\left( \frac{\pi}{6} \right) = - \sin\frac{\pi}{6} - \sqrt{3}\cos\frac{\pi}{6} = - \frac{1}{2} - \sqrt{3}\left( \frac{\sqrt{3}}{2} \right) = - \frac{1}{2} - \frac{3}{2} = - 2 < 0\]

\[\text { So, x } = \frac{\pi}{6} \text { is point of maxima } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.3 | Q 8 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x)=2x3 +5 on R .


f(x) = x\[-\] 1 on R .


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×