English

Let X, Y Be Two Variables and X>0, Xy=1, Then Minimum Value of X+Y is (A) 1 (B) 2 (C) 2 1 2 (D) 3 1 3 - Mathematics

Advertisements
Advertisements

Question

Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .

Options

  • 1

  • 2

  • \[2\frac{1}{2}\]

  • \[3\frac{1}{3}\]

MCQ

Solution

2

 

\[\text { Given }: xy = 1\]

\[ \Rightarrow y = \frac{1}{x}\]

\[f\left( x \right) = x + \frac{1}{x}\]

\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]

\[ \Rightarrow x^2 - 1 = 0\]

\[ \Rightarrow x^2 = 1\]

\[ \Rightarrow x = \pm 1\]

\[ \Rightarrow x = 1 ..............\left( \text { Given }: x > 1 \right)\]

`rArry=1`

\[\text { Now,} \]

\[f''\left( x \right) = \frac{2}{x^3}\]

\[ \Rightarrow f''\left( 1 \right) = 2 > 0\]

\[\text { So, x = 1 is a local minima } . \]

\[ \therefore \text { Minimum value of } f\left( x \right) = f\left( 1 \right) = 1 + 1 = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 82]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 23 | Page 82

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x)=sin 2x+5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) = (x \[-\] 5)4.


f(x) = x\[-\] 3x .


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) = (x - 1) (x + 2)2.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×