Advertisements
Advertisements
Question
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
Options
1
2
\[2\frac{1}{2}\]
\[3\frac{1}{3}\]
Solution
2
\[\text { Given }: xy = 1\]
\[ \Rightarrow y = \frac{1}{x}\]
\[f\left( x \right) = x + \frac{1}{x}\]
\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]
\[ \Rightarrow x^2 - 1 = 0\]
\[ \Rightarrow x^2 = 1\]
\[ \Rightarrow x = \pm 1\]
\[ \Rightarrow x = 1 ..............\left( \text { Given }: x > 1 \right)\]
`rArry=1`
\[\text { Now,} \]
\[f''\left( x \right) = \frac{2}{x^3}\]
\[ \Rightarrow f''\left( 1 \right) = 2 > 0\]
\[\text { So, x = 1 is a local minima } . \]
\[ \therefore \text { Minimum value of } f\left( x \right) = f\left( 1 \right) = 1 + 1 = 2\]
APPEARS IN
RELATED QUESTIONS
f(x) = 4x2 + 4 on R .
f(x)=sin 2x+5 on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = x3 \[-\] 1 on R .
f(x) = (x \[-\] 5)4.
f(x) = x3 \[-\] 3x .
f(x) = cos x, 0 < x < \[\pi\] .
f(x) = (x - 1) (x + 2)2.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .