English

If(X) = 1 4 X 2 + 2 X + 1 Then Its Maximum Value is (A) 4 3 (B) 2 3 (C) 1 (D) 3 4 - Mathematics

Advertisements
Advertisements

Question

If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .

Options

  • \[\frac{4}{3}\]

  • \[\frac{2}{3}\]

  • 1

  • \[\frac{3}{4}\]

MCQ

Solution

\[\frac{4}{3}\]

 

\[\text { Maximum value of }\frac{1}{4 x^2 + 2x + 1}= \text { Minimum value of }4 x^2 + 2x + 1 \]

\[\text{ Now, }\]

\[f\left( x \right) = 4 x^2 + 2x + 1\]

\[ \Rightarrow f'\left( x \right) = 8x + 2\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 8x + 2 = 0\]

\[ \Rightarrow 8x = - 2\]

\[ \Rightarrow x = \frac{- 1}{4}\]

\[\text { Now, } \]

\[f''\left( x \right) = 8\]

\[ \Rightarrow f''\left( 1 \right) = 8 > 0\]

\[\text { So, x } = \frac{- 1}{4} \text { is a local minima } . \]

\[\text { Thus },\frac{1}{4 x^2 + 2x + 1}\text { is maximum at x } = \frac{- 1}{4} . \]

\[ \Rightarrow \text { Maximum value of } \frac{1}{4 x^2 + 2x + 1} = \frac{1}{4 \left( \frac{- 1}{4} \right)^2 + 2\left( \frac{- 1}{4} \right) + 1}\]

\[ = \frac{1}{\frac{4}{16} - \frac{1}{2} + 1} = \frac{16}{12} = \frac{4}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 82]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 22 | Page 82

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f(x)=sin 2x+5 on R .


f(x) = x\[-\] 1 on R .


f(x) = (x - 1) (x + 2)2.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the point where f(x) = x log, x attains minimum value.


Write the maximum value of f(x) = x1/x.


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The minimum value of x loge x is equal to ____________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×