Advertisements
Advertisements
Question
Write the maximum value of f(x) = x1/x.
Solution
\[\text { Given }: \hspace{0.167em} f\left( x \right) = x^\frac{1}{x} \]
\[\text { Taking log on both sides, we get }\]
\[\log f\left( x \right) = \frac{1}{x}\log x\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{1}{f\left( x \right)}f'\left( x \right) = \frac{- 1}{x^2}\log x + \frac{1}{x^2}\]
\[ \Rightarrow f'\left( x \right) = f\left( x \right)\frac{1}{x^2}\left( 1 - \log x \right)\]
\[ \Rightarrow f'\left( x \right) = x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log x \right) ...........\left( 1 \right)\]
\[ \Rightarrow f'\left( x \right) = x^\frac{1}{x} - 2 \left( 1 - \log x \right) \]
\[\text { For a local maxima or a local minima, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow x^\frac{1}{x} - 2 \left( 1 - \log x \right) = 0\]
\[ \Rightarrow \log x = 1\]
\[ \Rightarrow x = e\]
\[\text { Now }, \]
\[f''\left( x \right) = x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log x \right)^2 + x^\frac{1}{x} \left( \frac{- 2}{x^3} + \frac{2}{x^3}\log x - \frac{1}{x^3} \right) = x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log x \right)^2 + x^\frac{1}{x} \left( - \frac{3}{x^3} + \frac{2}{x^3}\log x \right)\]
\[\text { At }x = e\]
\[f''\left( e \right) = e^\frac{1}{e} \left( \frac{1}{e^2} - \frac{1}{e^2}\log e \right)^2 + e^\frac{1}{e} \left( - \frac{3}{e^3} + \frac{2}{e^3}\log e \right) = - e^\frac{1}{e} \left( \frac{1}{e^3} \right) < 0\]
\[\text { So, x = e is a point of local maximum }. \]
\[\text { Thus, the maximum value is given by }\]
\[f\left( e \right) = e^\frac{1}{e} \]
APPEARS IN
RELATED QUESTIONS
f(x) = - (x-1)2+2 on R ?
f(x) = x3 \[-\] 1 on R .
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x) = x/2+2/x, x>0 `.
Find the maximum and minimum values of y = tan \[x - 2x\] .
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
If x+y=8, then the maximum value of xy is ____________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .