English

F(X) = (X − 1)2 + 3 in [ − 3,1] ? - Mathematics

Advertisements
Advertisements

Question

f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?

Sum

Solution

\[\text { Given }: \hspace{0.167em} f\left( x \right) = \left( x - 1 \right)^2 + 3\]

\[ \Rightarrow f'\left( x \right) = 2\left( x - 1 \right)\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 2\left( x - 1 \right) = 0\]

\[ \Rightarrow x = 1\]

\[\text { Thus, the critical points of f are - 3 and }1 . \]

\[\text { Now, }\]

\[f\left( - 3 \right) = \left( - 3 - 1 \right)^2 + 3 = 16 + 3 = 19\]

\[f\left( 1 \right) = \left( 1 - 1 \right)^2 + 3 = 3\]

\[\text { Hence, the absolute maximum value when x = - 3 is 19 and the absolute minimum value when x = 1 is }3 . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.4 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.4 | Q 1.2 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f(x)=sin 2x+5 on R .


f(x) = (x \[-\] 5)4.


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = (x - 1) (x + 2)2.


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the point where f(x) = x log, x attains minimum value.


Write the maximum value of f(x) = x1/x.


The number which exceeds its square by the greatest possible quantity is _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×