English

Let F(X) = (X − A)2 + (X − B)2 + (X − C)2. Then, F(X) Has a Minimum at X = (A) a + B + C 3 (B) 3 √ a B C (C) 3 1 a + 1 B + 1 C (D) None of These - Mathematics

Advertisements
Advertisements

Question

Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .

Options

  • \[\frac{a + b + c}{3}\]

  • \[\sqrt[3]{abc}\]

  • \[\frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}\]

  • none of these

MCQ

Solution

\[\frac{a + b + c}{3}\]
 
\[\text { Given }:   f\left( x \right) =    \left( x - a \right)^2  +  \left( x - b \right)^2  +  \left( x - c \right)^2 \] 
\[ \Rightarrow f'\left( x \right) =   2\left( x - a \right) + 2\left( x - b \right) + 2\left( x - c \right)\] 
\[\text { For  a  local  maxima  or  a  local  minima, we  must  have }  \] 
\[f'\left( x \right) = 0\] 
\[ \Rightarrow 2\left( x - a \right) + 2\left( x - b \right) + 2\left( x - c \right) = 0\] 
\[ \Rightarrow 2x - 2a + 2x - 2b + 2x - 2c = 0\] 
\[ \Rightarrow 6x = 2\left( a + b + c \right)\] 
\[ \Rightarrow x = \frac{a + b + c}{3}\] 
\[\text { Now },   \] 
\[f''\left( x \right) = 2 + 2 + 2 = 6 > 0\] 
\[\text { So },   x = \frac{a + b + c}{3} \text {  is  a  local minima. }\] 
shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 8 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x)=| x+2 | on R .


f(x)=sin 2x+5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x\[-\] 1 on R .


f(x) = (x \[-\] 5)4.


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×