English

The Maximum Value of X1/X, X > 0 is - Mathematics

Advertisements
Advertisements

Question

The maximum value of x1/x, x > 0 is __________ .

Options

  • `e^(1/e)`

  • `(1/e)^e`

  • 1

  • none of these

MCQ

Solution

\[e^\frac{1}{e}\]

\[\text { Given }:   f\left( x \right)   =    x^\frac{1}{x} \] 
\[\text { Taking  log  on  both  sides,   we  get }\] 
\[\log  f\left( x \right) = \frac{1}{x}\log  x\] 
\[\text { Differentiating  w . r . t .   x,   we  get }\] 
\[\frac{1}{f\left( x \right)}f'\left( x \right) = \frac{- 1}{x^2}\log  x + \frac{1}{x^2}\] 
\[ \Rightarrow f'\left( x \right) = f\left( x \right)\frac{1}{x^2}\left( 1 - \log  x \right)\] 
\[ \Rightarrow f'\left( x \right) =  x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log  x \right)                                   .  .  . \left( 1 \right)\] 
\[ \Rightarrow f'\left( x \right) =  x^\frac{1}{x} - 2 \left( 1 - \log  x \right)       \]
\[\text { For  a  local  maxima  or  a  local  minima,   we  must  have }\] 
\[f'\left( x \right) = 0\] 
\[ \Rightarrow  x^\frac{1}{x} - 2 \left( 1 - \log  x \right) = 0\] 
\[ \Rightarrow \log  x = 1\] 
\[ \Rightarrow x = e\]
\[\text { Now,} \] 
\[f''\left( x \right)   =  x^\frac{1}{x}  \left( \frac{1}{x^2} - \frac{1}{x^2}\log  x \right)^2  +  x^\frac{1}{x} \left( \frac{- 2}{x^3} + \frac{2}{x^3}\log  x - \frac{1}{x^3} \right) =  x^\frac{1}{x}  \left( \frac{1}{x^2} - \frac{1}{x^2}\log  x \right)^2  +  x^\frac{1}{x} \left( - \frac{3}{x^3} + \frac{2}{x^3}\log  x \right)\] 
\[\text { At  }x = e: \] 
\[f''\left( e \right)   =  e^\frac{1}{e}  \left( \frac{1}{e^2} - \frac{1}{e^2}\log  e \right)^2  +  e^\frac{1}{e} \left( - \frac{3}{e^3} + \frac{2}{e^3}\log  e \right) =  -  e^\frac{1}{e} \left( \frac{1}{e^3} \right) < 0\] 
\[\text { So,   x = e  is  a  point  of  local  maxima }. \] 
\[ \therefore   \text { Maximum  value } = f\left( e \right)   =    e^\frac{1}{e} \] 
shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 80]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 1 | Page 80

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f(x) = | sin 4x+3 | on R ?


f(x) = (x \[-\] 5)4.


f(x) = x3  (x \[-\] 1).


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =  cos x, 0 < x < \[\pi\] .


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = (x - 1) (x + 2)2.


f(x) = (x \[-\] 1) (x \[-\] 2)2.


`f(x)=xsqrt(1-x),  x<=1` .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×