English

F ( X ) = X √ 1 − X , X ≤ 1 - Mathematics

Advertisements
Advertisements

Question

`f(x)=xsqrt(1-x),  x<=1` .

Sum

Solution

\[\text { Given }: f\left( x \right) = x\sqrt{1 - x}\]

\[ \Rightarrow f'\left( x \right) = \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}}\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}} = 0\]

\[ \Rightarrow \sqrt{1 - x} = \frac{x}{2\sqrt{1 - x}}\]

\[ \Rightarrow 2 - 2x = x\]

\[ \Rightarrow 3x = 2\]

\[ \Rightarrow x = \frac{2}{3} \]

\[\text { Thus, x } = \frac{2}{3} \text { is the possible point of local maxima or local minima }. \]

\[\text { Now }, \]

\[ f''\left( x \right) = \frac{- 1}{\sqrt{1 - x}} - \frac{1}{2}\left( \frac{\sqrt{1 - x} + \frac{x}{2\sqrt{1 - x}}}{\left( 1 - x \right)} \right) = \frac{- 1}{\sqrt{1 - x}} - \frac{1}{2}\left[ \frac{2 - x}{\left( 1 - x \right)\sqrt{1 - x}} \right]\]

\[\text { At  }x = \frac{2}{3}: \]

\[ f''\left( \frac{2}{3} \right) = \frac{- 1}{\sqrt{1 - \frac{2}{3}}} - \frac{1}{2}\left[ \frac{2 - \frac{2}{3}}{\left( 1 - \frac{2}{3} \right)\sqrt{1 - \frac{2}{3}}} \right] = - \sqrt{3} - \frac{\frac{4}{3}}{\frac{1}{3 \times \sqrt{3}}} = - \sqrt{3} - 4\sqrt{3} < 0\]

\[\text { So,} x = \frac{2}{3}\text {  is the point of local maximum }. \]

\[\text { The local maximum value is given by }\]

\[f\left( \frac{2}{3} \right) = \frac{2}{3}\sqrt{1 - \frac{2}{3}} = \frac{2}{3\sqrt{3}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.3 | Q 2.2 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x) = x\[-\] 1 on R .


f(x) = (x \[-\] 5)4.


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = (x - 1) (x + 2)2.


f(x) = xex.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


For the function f(x) = \[x + \frac{1}{x}\]


The number which exceeds its square by the greatest possible quantity is _________________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×