English

Find the Absolute Maximum and Minimum Values of the Function of Given by F ( X ) = Cos 2 X + Sin X , X ∈ [ 0 , π ] . - Mathematics

Advertisements
Advertisements

Question

Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .

Sum

Solution

\[\text { Given }: f\left( x \right) = \cos^2 x + \sin x\]

\[ \Rightarrow f'\left( x \right) = 2 \cos x\left( - \sin x \right) + \cos x = - 2 \sin x \cos x + \cos x\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow - 2 \sin x \cos x + \cos x = 0\]

\[ \Rightarrow \cos x \left( 2 \sin x - 1 \right) = 0\]

\[ \Rightarrow \sin x = \frac{1}{2} or \cos x = 0\]

\[ \Rightarrow x = \frac{\pi}{6} or \frac{\pi}{2} \left[ \because x \in \left( 0, \pi \right) \right]\]

\[\text { Thus, the critical points of f are } 0, \frac{\pi}{6}, \frac{\pi}{2} \text { and } \pi . \]

\[\text { Now }, \]

\[f\left( 0 \right) = \cos^2 \left( 0 \right) + \sin \left( 0 \right) = 1\]

\[f\left( \frac{\pi}{6} \right) = \cos^2 \left( \frac{\pi}{6} \right) + \sin \left( \frac{\pi}{6} \right) = \frac{5}{4}\]

\[f\left( \frac{\pi}{2} \right) = \cos^2 \left( \frac{\pi}{2} \right) + \sin \left( \frac{\pi}{2} \right) = 1\]

\[f\left( \pi \right) = \cos^2 \left( \pi \right) + \sin \left( \pi \right) = 1\]

\[\text { Hence, the absolute maximum value when } x = \frac{\pi}{6}\text { is } \frac{5}{4} \text { and the absolute minimum value when  }x = 0, \frac{\pi}{2}, \pi \text{ is }1 . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.4 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.4 | Q 3 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x)=2x3 +5 on R .


f(x) = (x \[-\] 5)4.


f(x) =  (x \[-\] 1) (x+2)2


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = (x - 1) (x + 2)2.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the point where f(x) = x log, x attains minimum value.


Write the maximum value of f(x) = x1/x.


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


For the function f(x) = \[x + \frac{1}{x}\]


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×