English

F(X) = X3 − 6x2 + 9x + 15 - Mathematics

Advertisements
Advertisements

Question

f(x) = x3\[-\] 6x2 + 9x + 15

 

Sum

Solution

\[\text { Given }: f\left( x \right) = x^3 - 6 x^2 + 9x + 15\]

\[ \Rightarrow f'\left( x \right) = 3 x^2 - 12x + 9\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 3 x^2 - 12x + 9 = 0\]

\[ \Rightarrow x^2 - 4x + 3 = 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) = 0\]

\[ \Rightarrow x = 1 \text { and } 3\]

\[\text { Thus, x = 1 and x = 3 are the possible points of local maxima or local minima } . \]

\[\text { Now,} \]

\[f''\left( x \right) = 6x - 12\]

\[\text { At }x = 1: \]

\[ f''\left( 1 \right) = 6\left( 1 \right) - 12 = - 6 < 0\]

\[\text {So, x = 1 is the point of local maximum } . \]

\[\text { The local maximum value is given by }\]

\[f\left( 1 \right) = 1^3 - 6 \left( 1 \right)^2 + 9 \times 1 + 15 = 19\]

\[\text { At }x = 3: \]

\[ f''\left( 3 \right) = 6\left( 3 \right) - 12 = 6 > 0\]

\[\text { So, x = 3 is the point of local minimum }. \]

\[\text { The local minimum value is given by }\]

\[f\left( 3 \right) = 3^3 - 6 \left( 3 \right)^2 + 9 \times 3 + 15 = 15\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.3 | Q 1.02 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x)=| x+2 | on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = (x \[-\] 5)4.


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =  cos x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = (x - 1) (x + 2)2.


f(x) = xex.


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Find the maximum and minimum values of y = tan \[x - 2x\] .


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


The minimum value of x loge x is equal to ____________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×