मराठी

F(X) = X3 − 6x2 + 9x + 15 - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = x3\[-\] 6x2 + 9x + 15

 

बेरीज

उत्तर

\[\text { Given }: f\left( x \right) = x^3 - 6 x^2 + 9x + 15\]

\[ \Rightarrow f'\left( x \right) = 3 x^2 - 12x + 9\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 3 x^2 - 12x + 9 = 0\]

\[ \Rightarrow x^2 - 4x + 3 = 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) = 0\]

\[ \Rightarrow x = 1 \text { and } 3\]

\[\text { Thus, x = 1 and x = 3 are the possible points of local maxima or local minima } . \]

\[\text { Now,} \]

\[f''\left( x \right) = 6x - 12\]

\[\text { At }x = 1: \]

\[ f''\left( 1 \right) = 6\left( 1 \right) - 12 = - 6 < 0\]

\[\text {So, x = 1 is the point of local maximum } . \]

\[\text { The local maximum value is given by }\]

\[f\left( 1 \right) = 1^3 - 6 \left( 1 \right)^2 + 9 \times 1 + 15 = 19\]

\[\text { At }x = 3: \]

\[ f''\left( 3 \right) = 6\left( 3 \right) - 12 = 6 > 0\]

\[\text { So, x = 3 is the point of local minimum }. \]

\[\text { The local minimum value is given by }\]

\[f\left( 3 \right) = 3^3 - 6 \left( 3 \right)^2 + 9 \times 3 + 15 = 15\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.3 | Q 1.02 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = - (x-1)2+2 on R ?


f(x)=2x3 +5 on R .


f(x) =  (x \[-\] 1) (x+2)2


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = xex.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×