मराठी

F(X) = X + √ 1 − X , X ≤ 1 . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .

बेरीज

उत्तर

\[\text { Given }: f\left( x \right) = x + \sqrt{1 - x}\]

\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{2\sqrt{1 - x}}\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 1 - \frac{1}{2\sqrt{1 - x}} = 0\]

\[ \Rightarrow \sqrt{1 - x} = \frac{1}{2}\]

\[ \Rightarrow 1 - x = \frac{1}{4} \]

\[ \Rightarrow x = \frac{3}{4} \]

\[\text { Thus }, x = \frac{3}{4} \text { is the possible point of local maxima or local minima }. \]

\[\text { Now }, \]

\[f''\left( x \right) = - \frac{\frac{1}{4\sqrt{1 - x}}}{4\left( 1 - x \right)}\]

\[\text { At }x = \frac{3}{4}: \]

\[ f''\left( \frac{3}{4} \right) = - \frac{\frac{1}{4\sqrt{1 - \frac{3}{4}}}}{4\left( 1 - \frac{3}{4} \right)} = - \frac{1}{2} < 0\]

\[\text { So,} x = \frac{3}{4} \text { is the point of local maximum }. \]

\[\text { The local maximum value is given by }\]

\[f\left( \frac{3}{4} \right) = \frac{3}{4} + \sqrt{1 - \frac{3}{4}} = \frac{5}{4}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.3 | Q 1.12 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = 4x2 + 4 on R .


f(x) = | sin 4x+3 | on R ?


f(x)=2x3 +5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = xex.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Find the maximum and minimum values of y = tan \[x - 2x\] .


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = x1/x.


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×