Advertisements
Advertisements
प्रश्न
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
पर्याय
\[- \frac{1}{4}\]
\[- \frac{1}{3}\]
\[\frac{1}{6}\]
\[\frac{1}{5}\]
उत्तर
\[\frac{1}{6}\]
\[\text { Given }: f\left( x \right) = \frac{x}{4 + x + x^2}\]
\[ \Rightarrow f'\left( x \right) = \frac{4 + x + x^2 - x\left( 1 + 2x \right)}{\left( 4 + x + x^2 \right)^2}\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow \frac{4 + x + x^2 - x\left( 1 + 2x \right)}{\left( 4 + x + x^2 \right)^2} = 0\]
\[ \Rightarrow 4 + x + x^2 - x\left( 1 + 2x \right) = 0\]
\[ \Rightarrow 4 - x^2 = 0\]
\[ \Rightarrow x = \pm 2 \not\in \left[ - 1, 1 \right]\]
\[\text { The values of } f\left( x \right) \text { at extreme points are given by }\]
\[f\left( 1 \right) = \frac{1}{4 + 1 + 1^2} = \frac{1}{6}\]
\[f\left( - 1 \right) = \frac{- 1}{4 - 1 + \left( - 1 \right)^2} = \frac{- 1}{4}\]
\[\text{Thus,}\frac{1}{6}\text{ is the maximum value }\] .
APPEARS IN
संबंधित प्रश्न
f(x)=2x3 +5 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = sin 2x, 0 < x < \[\pi\] .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[x\sqrt{1 - x} , x > 0\].
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = xex.
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
Write the point where f(x) = x log, x attains minimum value.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
The maximum value of x1/x, x > 0 is __________ .
For the function f(x) = \[x + \frac{1}{x}\]
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .