मराठी

If(X) = X+ 1 X ,X > 0, Then Its Greatest Value is (A) − 2 (B) 0 (C) 3 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .

पर्याय

  • -2

  • 0

  • 3

  • none of these

MCQ

उत्तर

none of these

 

\[\text { Given }: f\left( x \right) = x + \frac{1}{x}\]

\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]

\[ \Rightarrow x^2 - 1 = 0\]

\[ \Rightarrow x^2 = 1\]

\[ \Rightarrow x = \pm 1\]

\[ \Rightarrow x = 1 ................\left( \text { Given }: x>0 \right)\]

\[\text { Now,} \]

\[f''\left( x \right) = \frac{2}{x^3}\]

\[ \Rightarrow f''\left( 1 \right) = 2 > 0\]

\[\text { So, x = 1 is a local minima } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.7 | Q 21 | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x)=sin 2x+5 on R .


f(x)=2x3 +5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x3  (x \[-\] 1).


f(x) =  (x \[-\] 1) (x+2)2


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = xex.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of y = tan \[x - 2x\] .


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


If x+y=8, then the maximum value of xy is ____________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


The minimum value of x loge x is equal to ____________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×