Advertisements
Advertisements
प्रश्न
If x+y=8, then the maximum value of xy is ____________ .
पर्याय
8
16
20
24
उत्तर
APPEARS IN
संबंधित प्रश्न
f(x)=sin 2x+5 on R .
f(x)=2x3 +5 on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 \[-\] 3x .
f(x) = x3 (x \[-\] 1)2 .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
`f(x)=xsqrt(1-x), x<=1` .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Find the maximum and minimum values of y = tan \[x - 2x\] .
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write the point where f(x) = x log, x attains minimum value.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = x1/x.
The maximum value of x1/x, x > 0 is __________ .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
For the function f(x) = \[x + \frac{1}{x}\]
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.