Advertisements
Advertisements
प्रश्न
Write the point where f(x) = x log, x attains minimum value.
उत्तर
\[\text{ Given:} \hspace{0.167em} f\left( x \right) = x \log_e x\]
\[ \Rightarrow f'\left( x \right) = \log_e x + 1\]
\[\text{ For a local maxima or a local minima, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow \log_e x + 1 = 0\]
\[ \Rightarrow \log_e x = - 1\]
\[ \Rightarrow x = \frac{1}{e}\]
\[ \Rightarrow f\left( \frac{1}{e} \right) = \frac{1}{e} \log_e \left( \frac{1}{e} \right) = - \frac{1}{e}\]
\[\text { Now,} \]
\[f''\left( x \right) = \frac{1}{x}\]
\[\text { At x } = \frac{1}{e}: \]
\[f''\left( \frac{1}{e} \right) = \frac{1}{\frac{1}{e}} = e > 0\]
\[\text { So }, \left( \frac{1}{e}, - \frac{1}{e} \right)\text { is a point of local minimum } . \]
APPEARS IN
संबंधित प्रश्न
f(x)=2x3 +5 on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = (x \[-\] 5)4.
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = cos x, 0 < x < \[\pi\] .
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = (x - 1) (x + 2)2.
`f(x) = 2/x - 2/x^2, x>0`
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
`f(x)=xsqrt(1-x), x<=1` .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
Find the maximum and minimum values of y = tan \[x - 2x\] .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
Which of the following graph represents the extreme value:-