Advertisements
Advertisements
प्रश्न
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
उत्तर
\[\text { Profit =S.P. - C.P.}\]
\[ \Rightarrow P = x\left( 5 - \frac{x}{100} \right) - \left( 500 + \frac{x}{5} \right)\]
\[ \Rightarrow P = 5x - \frac{x^2}{100} - 500 - \frac{x}{5}\]
\[ \Rightarrow \frac{dP}{dx} = 5 - \frac{x}{50} - \frac{1}{5}\]
\[\text { For maximum or minimum values of P, we must have }\]
\[\frac{dP}{dx} = 0\]
\[ \Rightarrow 5 - \frac{x}{50} - \frac{1}{5} = 0\]
\[ \Rightarrow \frac{24}{5} = \frac{x}{50}\]
\[ \Rightarrow x = \frac{24 \times 50}{5}\]
\[ \Rightarrow x = 240\]
\[\text { Now, }\]
\[\frac{d^2 P}{d x^2} = \frac{- 1}{50} < 0\]
\[\text { So, the profit is maximum if 240 items are sold.}\]
Notes
The solution given in the book is incorrect. The solution here is created according to the question given in the book.
APPEARS IN
संबंधित प्रश्न
f(x) = - (x-1)2+2 on R ?
f(x)=sin 2x+5 on R .
f(x) = | sin 4x+3 | on R ?
f(x) = (x \[-\] 1) (x+2)2.
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = sin 2x, 0 < x < \[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
Write the minimum value of f(x) = xx .
The maximum value of x1/x, x > 0 is __________ .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The minimum value of x loge x is equal to ____________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.