Advertisements
Advertisements
प्रश्न
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
पर्याय
`ab<c^2/4`
`ab>=c^2/4`
`ab>=c/4`
उत्तर
\[ \ ab \geq \frac{c^2}{4}\]
\[\text { Given }: ax + \frac{b}{x} \geq c\]
\[\text { Minimum value of} ax + \frac{b}{x} = c\]
\[\text { Now }, \]
\[f\left( x \right) = ax + \frac{b}{x}\]
\[ \Rightarrow f'\left( x \right) = a - \frac{b}{x^2}\]
\[\text { For a local maxima or a local minima, we must have}\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow a - \frac{b}{x^2} = 0\]
\[ \Rightarrow a x^2 - b = 0\]
\[ \Rightarrow a x^2 = b\]
\[ \Rightarrow x^2 = \frac{b}{a}\]
\[ \Rightarrow x = \pm \frac{\sqrt{b}}{\sqrt{a}}\]
\[f''\left( x \right) = \frac{2b}{x^3}\]
\[ \Rightarrow f''\left( x \right) = \frac{2b}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)^3}\]
\[ \Rightarrow f''\left( x \right) = \frac{2b \left( a \right)^\frac{3}{2}}{\left( b \right)^\frac{3}{2}} > 0\]
\[\text { So }, x = \frac{\sqrt{b}}{\sqrt{a}} \text { is a local minima } . \]
\[ \therefore f\left( \frac{\sqrt{b}}{\sqrt{a}} \right) = a\left( \frac{\sqrt{b}}{\sqrt{a}} \right) + \frac{b}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)} \geq c\]
\[ = \sqrt{a}\sqrt{a}\left( \frac{\sqrt{b}}{\sqrt{a}} \right) + \frac{\sqrt{b}\sqrt{b}}{\left( \frac{\sqrt{b}}{\sqrt{a}} \right)} \geq c\]
\[ = \sqrt{ab} + \sqrt{ab} \geq c\]
\[ \Rightarrow 2\sqrt{ab} \geq c\]
\[ \Rightarrow \frac{c}{2} \leq \sqrt{ab}\]
\[ \Rightarrow \frac{c^2}{4} \leq ab\]
APPEARS IN
संबंधित प्रश्न
f(x)=2x3 +5 on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = cos x, 0 < x < \[\pi\] .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
f(x) = x3\[-\] 6x2 + 9x + 15
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = x/2+2/x, x>0 `.
f(x) = (x \[-\] 1) (x \[-\] 2)2.
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the point where f(x) = x log, x attains minimum value.
Write the maximum value of f(x) = x1/x.
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .