Advertisements
Advertisements
प्रश्न
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
उत्तर
\[\text { Let the point } \left( x, y \right) \text { on the curve} x^2 = 4y \text { be nearest to } \left( 0, 5 \right) . \text { Then }, \]
\[ x^2 = 4y\]
\[ \Rightarrow y = \frac{x^2}{4} ............ \left( 1 \right)\]
\[\text { Also }, \]
\[ d^2 = \left( x \right)^2 + \left( y - 5 \right)^2 ..........\left[\text {Using distance formula} \right]\]
\[\text { Now,} \]
\[Z = d^2 = \left( x \right)^2 + \left( y - 5 \right)^2 \]
\[ \Rightarrow Z = \left( x \right)^2 + \left( \frac{x^2}{4} - 5 \right)^2 .............\left[ \text {Using eq. } \left( 1 \right) \right]\]
\[ \Rightarrow Z = x^2 + \frac{x^4}{16} + 25 - \frac{5 x^2}{2}\]
\[ \Rightarrow \frac{dZ}{dy} = 2x + \frac{4 x^3}{16} - 5x\]
\[\text {For maximum or minimum values of Z, we must have }\]
\[\frac{dZ}{dy} = 0\]
\[ \Rightarrow 2x + \frac{4 x^3}{16} - 5x = 0\]
\[ \Rightarrow \frac{4 x^3}{16} = 3x\]
\[ \Rightarrow x^3 = 12x\]
\[ \Rightarrow x^2 = 12\]
\[ \Rightarrow x = \pm 2\sqrt{3}\]
\[\text {Substituting the value of x in eq. } \left( 1 \right), \text { we get }\]
\[y = 3\]
\[\text { Now,} \]
\[\frac{d^2 Z}{d y^2} = 2 + \frac{12 x^2}{16} - 5\]
\[ \Rightarrow \frac{d^2 Z}{d y^2} = 9 - 3 = 6 > 0\]
\[\text { So, the required nearest point is } \left( \pm 2\sqrt{3}, 3 \right) .\]
APPEARS IN
संबंधित प्रश्न
f(x)=sin 2x+5 on R .
f(x)=2x3 +5 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = sin 2x, 0 < x < \[\pi\] .
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
`f(x) = x/2+2/x, x>0 `.
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
The maximum value of x1/x, x > 0 is __________ .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
If x+y=8, then the maximum value of xy is ____________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?