Advertisements
Advertisements
प्रश्न
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
उत्तर
\[\text { Given: } \hspace{0.167em} f\left( x \right) = 2 \sin x - x\]
\[ \Rightarrow f'\left( x \right) = 2 \cos x - 1\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow 2 \cos x - 1 = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\]
\[ \Rightarrow x = \frac{\pi}{3} or \frac{- \pi}{3}\]
Sincef '(x) changes from positive to negative when x increases through \[\frac{\pi}{3}\] x = \[\frac{\pi}{3}\] is the point of local maxima.
The local maximum value of f (x) at x = \[\frac{\pi}{3}\] is given by \[2 \sin \left( \frac{\pi}{3} \right) - \frac{\pi}{3} = \sqrt{3} - \frac{\pi}{3}\]
Since f '(x) changes from negative to positive when x increases through \[- \frac{\pi}{3}\] x = \[- \frac{\pi}{3}\] is the point of local minima.
The local minimum value of f (x) at x = \[- \frac{\pi}{3}\] is given by \[2 \sin \left( \frac{- \pi}{3} \right) + \frac{\pi}{3} = \frac{\pi}{3} - \sqrt{3}\]
APPEARS IN
संबंधित प्रश्न
f(x)=2x3 +5 on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = x3 \[-\] 3x .
f(x) = x3 (x \[-\] 1)2 .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
`f(x) = x/2+2/x, x>0 `.
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
For the function f(x) = \[x + \frac{1}{x}\]
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.