मराठी

F(X) = X3 (X − 1)2 . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = x3  (x \[-\] 1).

बेरीज

उत्तर

\[\text { Given }: f\left( x \right) = x^3 \left( x - 1 \right)^2 \]

\[ \Rightarrow f'\left( x \right) = 3 x^2 \left( x - 1 \right)^2 + 2 x^3 \left( x - 1 \right)\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 3 x^2 \left( x - 1 \right)^2 + 2 x^3 \left( x - 1 \right) = 0\]

\[ \Rightarrow x^2 \left( x - 1 \right)\left\{ 3x - 3 + 2x \right\} = 0\]

\[ \Rightarrow x^2 \left( x - 1 \right)\left( 5x - 3 \right) = 0\]

\[ \Rightarrow x = 0, 1, \frac{3}{5}\]

Since f '(x) changes from negative to positive when x increases through 1, x = 1 is the point of local minima.

The local minimum value of  f (x)  at x = 1 is given by \[\left( 1 \right)^3 \left( 1 - 1 \right)^2 = 0\]

Since f '(x) changes from positive to negative when x increases through \[\frac{3}{5}\], x = \[\frac{3}{5}\] is the point of local maxima.

The local minimum value of  f (x) at x =  \[\frac{3}{5}\] is given by \[\left( \frac{3}{5} \right)^3 \left( \frac{3}{5} - 1 \right)^2 = \frac{27}{125} \times \frac{4}{25} = \frac{108}{3125}\]
Sincef '(x) does not change from positive as x increases through 0, x = 0 is a point of inflexion.
shaalaa.com

Notes

The solution in the book is incorrect. The solution here is created according to the question given in the book.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.2 | Q 3 | पृष्ठ १६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = 4x2 + 4 on R .


f(x)=| x+2 | on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = (x \[-\] 5)4.


f(x) = x\[-\] 3x .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = xex.


`f(x) = x/2+2/x, x>0 `.


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×