Advertisements
Advertisements
प्रश्न
f(x) = (x \[-\] 5)4.
उत्तर
\[\text { Given: } \hspace{0.167em} f\left( x \right) = \left( x - 5 \right)^4 \]
\[ \Rightarrow f'\left( x \right) = 4 \left( x - 5 \right)^3 \]
\[\text { For a local maximum or a local minimum, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 4 \left( x - 5 \right)^3 = 0\]
\[ \Rightarrow x = 5\]
Since f '(x) changes from negative to positive when x increases through 5, x = 5 is the point of local minima.
The local minimum value of f (x) at x = 5 is given by \[\left( 5 - 5 \right)^4 = 0\] .
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = (x - 1) (x + 2)2.
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the maximum value of f(x) = x1/x.
The maximum value of x1/x, x > 0 is __________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .