Advertisements
Advertisements
प्रश्न
f(x) = (x - 1) (x + 2)2.
उत्तर
\[\text { Given }: \hspace{0.167em} f\left( x \right) = \left( x - 1 \right) \left( x + 2 \right)^2 \]
\[ = \left( x - 1 \right)\left( x^2 + 4x + 4 \right)\]
\[ = x^3 + 4 x^2 + 4x - x^2 - 4x - 4\]
\[ = x^3 + 3 x^2 - 4\]
\[ \Rightarrow f'\left( x \right) = 3 x^2 + 6x\]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow 3 x^2 + 6x = 0\]
\[ \Rightarrow 3x\left( x + 2 \right) = 0\]
\[ \Rightarrow x = 0 \text { and } - 2\]
\[\text { Thus, x = 0 and x = - 2 are the possible points of local maxima or local minima }. \]
\[\text { Now }, \]
\[f''\left( x \right) = 6x + 6\]
\[\text { At x } = 0: \]
\[ f''\left( 0 \right) = 6\left( 0 \right) + 6 = 6 > 0\]
\[\text { So, x = 0 is the point of local minimum } . \]
\[\text { The local minimum value is given by }\]
\[f\left( 0 \right) = \left( 0 - 1 \right) \left( 0 + 2 \right)^2 = - 4\]
\[\text { At }x = - 2: \]
\[ f''\left( - 2 \right) = 6\left( - 2 \right) + 6 = - 6 < 0\]
\[\text { So, x = - 2 is the point of local maximum} . \]
\[\text { The local maximum value is given by } \]
\[f\left( - 2 \right) = \left( - 2 - 1 \right) \left( - 2 + 2 \right)^2 = 0\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x) = (x \[-\] 5)4.
f(x) = (x \[-\] 1) (x+2)2.
f(x) = cos x, 0 < x < \[\pi\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write sufficient conditions for a point x = c to be a point of local maximum.
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
The maximum value of x1/x, x > 0 is __________ .
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .