मराठी

F(X) = − ( X − 1 ) 3 ( X + 1 ) 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .

बेरीज

उत्तर

\[\text { Given:} f\left( x \right) = - \left( x - 1 \right)^3 \left( x + 1 \right)^2 \]

\[ \Rightarrow f'\left( x \right) = - \left[ 3 \left( x - 1 \right)^2 \left( x + 1 \right)^2 + 2\left( x + 1 \right) \left( x - 1 \right)^3 \right]\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow - 3 \left( x - 1 \right)^2 \left( x + 1 \right)^2 - 2\left( x + 1 \right) \left( x - 1 \right)^3 = 0\]

\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 3\left( x + 1 \right) - 2\left( x - 1 \right) \right] = 0\]

\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 3x - 3 - 2x + 2 \right] = 0\]

\[ \Rightarrow \left( x - 1 \right)^2 \left( x + 1 \right)\left[ - 5x - 1 \right] = 0\]

\[ \Rightarrow x = 1, - 1 \text { and }\frac{- 1}{5}\]

\[\text { Thus, x = 1, x = - 1 and } x = \frac{- 1}{5} \text { are the possible points of local maxima or local minima }. \]

\[\text { Now,} \]

\[f''\left( x \right) = - \left[ 3\left\{ 2\left( x - 1 \right) \left( x + 1 \right)^2 + 2\left( x + 1 \right) \left( x - 1 \right)^2 \right\} + 2\left\{ \left( x - 1 \right)^3 + 3 \left( x - 1 \right)^2 \left( x + 1 \right) \right\} \right]\]

\[ = - 6\left( x - 1 \right) \left( x + 1 \right)^2 + 6\left( x + 1 \right) \left( x - 1 \right)^2 - 2 \left( x - 1 \right)^3 - 6 \left( x - 1 \right)^2 \left( x + 1 \right)\]

\[\text { At x} = 1: \]

\[ f''\left( 1 \right) = - 6\left( 1 - 1 \right) \left( 1 + 1 \right)^2 + 6\left( 1 + 1 \right) \left( 1 - 1 \right)^2 - 2 \left( 1 - 1 \right)^3 - 6 \left( 1 - 1 \right)^2 \left( 1 + 1 \right) = 0\]

\[\text { So, it is a point of inflexion } . \]

\[\text { At } x = - 1: \]

\[ f''\left( - 1 \right) = - 6\left( - 1 - 1 \right) \left( - 1 + 1 \right)^2 + 6\left( - 1 + 1 \right) \left( - 1 - 1 \right)^2 - 2 \left( - 1 - 1 \right)^3 - 6 \left( - 1 - 1 \right)^2 \left( - 1 + 1 \right) = 16 > 0\]

\[\text{ So, x = - 1 is the point of local minimum }. \]

\[\text { The local minimum value is given by } \]

\[f\left( - 1 \right) = - \left( 1 - 1 \right)^3 \left( - 1 + 1 \right)^2 = 0\]

\[\text { At } x = - \frac{1}{5}: \]

\[ f''\left( - \frac{1}{5} \right) = - 6\left( - \frac{1}{5} - 1 \right) \left( - \frac{1}{5} + 1 \right)^2 + 6\left( - \frac{1}{5} + 1 \right) \left( - \frac{1}{5} - 1 \right)^2 + 2 \left( - \frac{1}{5} - 1 \right)^3 - 6 \left( - \frac{1}{5} - 1 \right)^2 \left( - \frac{1}{5} + 1 \right)\]

\[ = \frac{576}{125} + \frac{384}{125} - \frac{432}{125} - \frac{864}{125} = \frac{- 336}{125} < 0\]

\[\text { So,} x = - \frac{1}{5} \text { is the point of local maximum }. \]

\[\text { The local maximum value is given by }\]

\[f\left( - \frac{1}{5} \right) = - \left( - \frac{1}{5} - 1 \right)^3 \left( - \frac{1}{5} + 1 \right)^2 = - \left( \frac{- 216}{125} \right)\left( \frac{16}{25} \right) = \frac{3465}{3125}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.3 | Q 2.3 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = 4x2 + 4 on R .


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) =  x\[-\] 6x2 + 9x + 15 . 


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


`f(x)=xsqrt(1-x),  x<=1` .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


The maximum value of x1/x, x > 0 is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


The minimum value of x loge x is equal to ____________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×