मराठी

The Minimum Value of the Function F ( X ) = 2 X 3 − 21 X 2 + 36 X − 20 is - Mathematics

Advertisements
Advertisements

प्रश्न

The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .

पर्याय

  • -128

  • -126

  • -120

  • none of these

MCQ

उत्तर

`-128`

 

Given:-

`f(x)=2x^3-21x^2+36x-20`

`rArrf'(x)=6x^2-42x+36`

For a local maxima or a local minima, we must have

`f'(x)=0`

`rArr6x^2-42x+36=0`

`rArrx^2-7x+6=0`

`rArr(x-1)(x-6)=0`

`rArrx=1, 6`

Now,

`f''(x)=12x-42`

`rArrf''(1)=12-42=-30<0`

So, x = 1 is a local maxima.

Also,

`f''(6)=72-42=30>0`

So, x = 6 is a local minima.

The local minimum value is given by

`f(6)=2(6)^3-21(6)^2+36(6)-20=-128`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.7 | Q 29 | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x)=| x+2 | on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x3  (x \[-\] 1).


f(x) =  x\[-\] 6x2 + 9x + 15 . 


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = xex.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write sufficient conditions for a point x = c to be a point of local maximum.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the minimum value of f(x) = xx .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The number which exceeds its square by the greatest possible quantity is _________________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×