Advertisements
Advertisements
प्रश्न
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
उत्तर
\[\text { Given }: f\left( x \right) = x\sqrt{2 - x^2}\]
\[ \Rightarrow f'\left( x \right) = \sqrt{2 - x^2} - \frac{x^2}{\sqrt{2 - x^2}}\]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow \sqrt{2 - x^2} - \frac{x^2}{\sqrt{2 - x^2}} = 0\]
\[ \Rightarrow \sqrt{2 - x^2} = \frac{x}{\sqrt{2 - x^2}}\]
\[ \Rightarrow 2 - x^2 = x^2 \]
\[ \Rightarrow x^2 = 1\]
\[ \Rightarrow x = \pm 1 \]
\[\text { Thus, x = 1 and x = - 1 are the possible points of local maxima or local minima }. \]
\[\text { Now }, \]
\[f''\left( x \right) = \frac{- x}{\sqrt{2 - x^2}} - \left( \frac{2x\sqrt{2 - x^2} + \frac{x^3}{\sqrt{2 - x^2}}}{2 - x^2} \right) = \frac{- x}{\sqrt{2 - x^2}} - \left( \frac{2x\left( 2 - x^2 \right) + x^3}{\left( 2 - x^2 \right)\sqrt{2 - x^2}} \right)\]
\[\text { At }x = 1: \]
\[ f''\left( 1 \right) = \frac{- 1}{\sqrt{2 - 1^2}} - \left[ \frac{2\left( 2 - 1^2 \right) + 1^3}{\left( 2 - 1^2 \right)\sqrt{2 - 1^2}} \right] = - \frac{1}{2} - \frac{3}{2} = - 2 < 0\]
\[\text { So, x = 1 is the point of local maximum }. \]
\[\text { The local maximum value is given by }\]
\[f\left( 4 \right) = 1\sqrt{2 - 1^2} = 1\]
\[\text { At }x = - 1: \]
\[ f''\left( - 1 \right) = \frac{1}{\sqrt{2 - 1^2}} + \left[ \frac{2\left( 2 - 1^2 \right) - 1^3}{\left( 2 - 1^2 \right)\sqrt{2 - 1^2}} \right] = 1 + 1 = 2 > 0\]
\[\text { So, x = - 1 is the point of local minimum } . \]
\[\text { The local minimum value is given by }\]
\[f\left( - 1 \right) = - 1\sqrt{2 - 1^2} = - 1\]
APPEARS IN
संबंधित प्रश्न
f(x)=sin 2x+5 on R .
f(x) = (x \[-\] 5)4.
f(x) = (x - 1) (x + 2)2.
`f(x) = 2/x - 2/x^2, x>0`
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in }[1, 9]\] .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write sufficient conditions for a point x = c to be a point of local maximum.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = x1/x.
The number which exceeds its square by the greatest possible quantity is _________________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .