Advertisements
Advertisements
प्रश्न
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
पर्याय
3
`3/4`
1
none of these
उत्तर
1
\[\text { Given: } f\left( x \right) = x^2 + x + 1\]
\[ \Rightarrow f'\left( x \right) = 2x + 1\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 2x + 1 = 0\]
\[ \Rightarrow 2x = - 1\]
\[ \Rightarrow x = \frac{- 1}{2} \not\in \left[ 0, 1 \right]\]
\[\text { At extreme points } : \]
\[ f\left( 0 \right) = 0\]
\[f\left( 1 \right) = 1 + 1 + 1 = 3 > 0\]
\[\text { So, x = 1 is a local minima }. \]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x)=| x+2 | on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = (x \[-\] 5)4.
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
Divide 64 into two parts such that the sum of the cubes of two parts is minimum.
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle will produce the largest area of the window.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The maximum value of x1/x, x > 0 is __________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?