मराठी

F ( X ) = ( X + 1 ) ( X + 2 ) 1 3 , X ≥ − 2 - Mathematics

Advertisements
Advertisements

प्रश्न

`f(x) = (x+1) (x+2)^(1/3), x>=-2` .

बेरीज

उत्तर

\[\text{Given:} \hspace{0.167em} f\left( x \right) = \left( x + 1 \right) \left( x + 2 \right)^\frac{1}{3} \]

\[ \Rightarrow f'\left( x \right) = \left( x + 2 \right)^\frac{1}{3} + \frac{1}{3}\left( x + 1 \right) \left( x + 2 \right)^\frac{- 2}{3} \]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)^\frac{1}{3} + \frac{1}{3}\left( x + 1 \right) \left( x + 2 \right)^\frac{- 2}{3} = 0\]

\[ \Rightarrow \frac{1}{3}\left( x + 1 \right) = - \left( x + 2 \right)^\frac{1}{3} \times \left( x + 2 \right)^\frac{2}{3} \]

\[ \Rightarrow \frac{1}{3}\left( x + 1 \right) = - \left( x + 2 \right)\]

\[ \Rightarrow x + 1 = - 3x - 6\]

\[ \Rightarrow x = \frac{- 7}{4}\]

Thus, `x = (- 7)/4` is the possible point of local maxima or local minima.

\[\text { Now,} \]

\[f''\left( \frac{- 7}{4} \right) = \frac{2}{3} \left( x + 2 \right)^\frac{- 2}{3} - \frac{2}{9}\left( x + 1 \right) \left( x + 2 \right)^\frac{- 5}{3} \]

\[\text { At } x = \frac{- 7}{4}: \]

\[ f''\left( \frac{- 7}{4} \right) = \frac{2}{3} \left( \frac{- 7}{4} + 2 \right)^\frac{- 2}{3} - \frac{2}{9}\left( \frac{- 7}{4} + 1 \right) \left( \frac{- 7}{4} + 2 \right)^\frac{- 5}{3} = \frac{2}{3} \left( \frac{1}{4} \right)^\frac{- 2}{3} + \frac{1}{18} \left( \frac{1}{4} \right)^\frac{- 5}{2} > 0\]

\[\text { So}, x = \frac{- 7}{4} \text { is the point of local minimum }. \]

\[\text { The local minimum value is given by}\]

\[f\left( \frac{- 7}{4} \right) = \left( \frac{- 7}{4} + 1 \right) \left( \frac{- 7}{4} + 2 \right)^\frac{1}{3} = \frac{- 3}{4} \left( \frac{1}{4} \right)^\frac{1}{3} = \frac{- 3}{4^\frac{4}{3}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.3 | Q 1.07 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = | sin 4x+3 | on R ?


f(x) =\[x\sqrt{1 - x} , x > 0\].


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = (x - 1) (x + 2)2.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

 

A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


The maximum value of x1/x, x > 0 is __________ .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


Let f(x) = x3+3x\[-\] 9x+2. Then, f(x) has _________________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×