Advertisements
Advertisements
प्रश्न
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
उत्तर
\[\text { Given }: \hspace{0.167em} M = \frac{Wx}{3} - \frac{W x^3}{3 L^2}\]
\[ \Rightarrow \frac{dM}{dx} = \frac{W}{3} - 3 \times \frac{W x^2}{3 L^2}\]
\[ \Rightarrow \frac{dM}{dx} = \frac{W}{3} - \frac{W x^2}{L^2}\]
\[\text { For maximum or minimum values of M, we must have }\]
\[\frac{dM}{dx} = 0\]
\[ \Rightarrow \frac{W}{3} - \frac{W x^2}{L^2} = 0\]
\[ \Rightarrow \frac{W}{3} = \frac{W x^2}{L^2}\]
\[ \Rightarrow x = \frac{L}{\sqrt{3}}\]
\[\text { Now }, \]
\[\frac{d^2 M}{d x^2} = - \frac{2Wx}{L^2} < 0\]
\[\text { So, M is maximum at } x = \frac{L}{\sqrt{3}} .\]
APPEARS IN
संबंधित प्रश्न
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
`f(x) = 2/x - 2/x^2, x>0`
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(1-x), x<=1` .
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
For the function f(x) = \[x + \frac{1}{x}\]
At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .
The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
Which of the following graph represents the extreme value:-