मराठी

Show that Among All Positive Numbers X and Y with X2 + Y2 =R2, the Sum X+Y is Largest When X=Y=R √ 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .

बेरीज

उत्तर

\[\text { Here }, \]

\[ x^2 + y^2 = r^2 \]

\[ \Rightarrow y = \sqrt{r^2 - x^2} ................ \left( 1 \right)\]

\[\text { Now, }\]

\[Z = x + y\]

\[ \Rightarrow Z = x + \sqrt{r^2 - x^2} .............\left[ \text { From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow \frac{dZ}{dx} = 1 + \frac{\left( - 2x \right)}{2\sqrt{r^2 - x^2}}\]

\[\text { For maximum or minimum values of Z, we must have }\]

\[\frac{dZ}{dx} = 0\]

\[ \Rightarrow 1 + \frac{\left( - 2x \right)}{2\sqrt{r^2 - x^2}} = 0\]

\[ \Rightarrow 2x = 2\sqrt{r^2 - x^2}\]

\[ \Rightarrow x = \sqrt{r^2 - x^2}\]

\[\text { Squaring both the sides, we get }\]

\[ \Rightarrow x^2 = r^2 - x^2 \]

\[ \Rightarrow 2 x^2 = r^2 \]

\[ \Rightarrow x = \frac{r}{\sqrt{2}}\]

\[\text { Substituting the value of x in eq. } \left( 1 \right), \text { we get }\]

\[y = \sqrt{r^2 - x^2}\]

\[ \Rightarrow y = \sqrt{r^2 - \left( \frac{r}{\sqrt{2}} \right)^2}\]

\[ \Rightarrow y = \frac{r}{\sqrt{2}}\]

\[\frac{d^2 z}{d x^2} = \frac{- \sqrt{r^2 - x^2} + \frac{x\left( - x \right)}{\sqrt{r^2 - x^2}}}{r^2 - x^2}\]

\[ \Rightarrow \frac{d^2 z}{d x^2} = \frac{- r^2 + x^2 - x^2}{\left( r^2 - x^2 \right)^\frac{3}{2}}\]

\[ \Rightarrow \frac{d^2 z}{d x^2} = \frac{- r^2}{r^3} \times 2\sqrt{2}\]

\[ \Rightarrow \frac{d^2 z}{d x^2} = \frac{- 2\sqrt{2}}{r} < 0\]

\[\text { So, z = x + y is maximum when x = y } = \frac{r}{\sqrt{2}} . \]

\[\text { Hence proved } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.5 | Q 28 | पृष्ठ ७४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = | sin 4x+3 | on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = (x \[-\] 5)4.


f(x) =  x\[-\] 6x2 + 9x + 15 . 


Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:

f(x) = x3(2x \[-\] 1)3.


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


`f(x)=xsqrt(1-x),  x<=1` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = (x \[-\] 2) \[\sqrt{x - 1} \text { in  }[1, 9]\] .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


If x+y=8, then the maximum value of xy is ____________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×