मराठी

Find the Point on the Curvey Y2=2x Which is at a Minimum Distance from the Point (1,4). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).

बेरीज

उत्तर

\[\text { Suppose a point  }\left( x, y \right)\text { on the curve } y^2 = 2x \text { is nearest to the point }\left( 1, 4 \right) . \text { Then }, \]

\[ y^2 = 2x\]

\[ \Rightarrow x = \frac{y^2}{2} . . . \left( 1 \right)\]

\[ d^2 = \left( x - 1 \right)^2 + \left( y - 4 \right)^2 ...................\left[\text { Using distance formula } \right]\]

\[\text { Now,} \]

\[Z = d^2 = \left( x - 1 \right)^2 + \left( y - 4 \right)^2 \]

\[ \Rightarrow Z = \left( \frac{y^2}{2} - 1 \right)^2 + \left( y - 4 \right)^2 .......................\left[ \text { From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow Z = \frac{y^4}{4} + 1 - y^2 + y^2 + 16 - 8y\]

\[ \Rightarrow \frac{dZ}{dy} = y^3 - 8\]

\[\text { For maximum or minimum values of Z, we must have }\]

\[\frac{dZ}{dy} = 0\]

\[ \Rightarrow y^3 - 8 = 0\]

\[ \Rightarrow y^3 = 8\]

\[ \Rightarrow y = 2\]

\[\text { Substituting the value of y in } \left( 1 \right),\text {  we get }\]

\[x = 2\]

\[\text { Now,} \]

\[\frac{d^2 Z}{d y^2} = 3 y^2 \]

\[ \Rightarrow \frac{d^2 Z}{d y^2} = 12 > 0\]

\[\text { So, the required nearest point is } \left( 2, 2 \right) .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.5 | Q 34 | पृष्ठ ७४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = (x \[-\] 5)4.


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = xex.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


For the function f(x) = \[x + \frac{1}{x}\]


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of x loge x is equal to ____________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×