Advertisements
Advertisements
प्रश्न
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
उत्तर
\[\text { Here }, \]
\[f\left( x \right) = \frac{\log x}{x}\]
\[ \Rightarrow f'\left( x \right) = \frac{1 - \log x}{x^2}\]
\[\text { For the local maxima or minima, we must have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow \frac{1 - \log x}{x^2} = 0\]
\[ \Rightarrow 1 = \log x\]
\[ \Rightarrow \log e = \log x\]
\[ \Rightarrow x = e\]
\[\text { Now,} \]
\[f''\left( x \right) = \frac{x^2 \left( \frac{- 1}{x} \right) - 2x\left( 1 - \log x \right)}{x^4} = \frac{- 3 + 2 \log x}{x^3}\]
\[ \Rightarrow f''\left( e \right) = \frac{- 3 + 2 \log e}{e^3} = \frac{- 1}{e^3} < 0\]
\[\text { So, x = e is the point of local maximum }.\]
APPEARS IN
संबंधित प्रश्न
f(x) = 4x2 + 4 on R .
f(x) = - (x-1)2+2 on R ?
f(x) = (x \[-\] 5)4.
f(x) = x3 \[-\] 3x .
f(x) = x3 (x \[-\] 1)2 .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = x3\[-\] 6x2 + 9x + 15
`f(x) = (x+1) (x+2)^(1/3), x>=-2` .
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .