मराठी

F(X) = (X − 1) (X − 2)2. - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = (x \[-\] 1) (x \[-\] 2)2.

बेरीज

उत्तर

\[\text { Given: } f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right)^2 \]

\[ = \left( x - 1 \right)\left( x^2 - 4x + 4 \right)\]

\[ = x^3 - 4 x^2 + 4x - x^2 + 4x - 4\]

\[ = x^3 - 5 x^2 + 8x - 4\]

\[ \Rightarrow f'\left( x \right) = 3 x^2 - 10x + 8\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow 3 x^2 - 10x + 8 = 0\]

\[ \Rightarrow 3 x^2 - 6x - 4x + 8 = 0\]

\[ \Rightarrow \left( x - 2 \right)\left( 3x - 4 \right) = 0\]

\[ \Rightarrow x = 2 \text { and }\frac{4}{3}\]

\[\text { Thus, x = 2 and } x = \frac{4}{3} \text { are the possible points of local maxima or local minima } . \]

\[\text { Now }, \]

\[f''\left( x \right) = 6x - 10\]

\[At x = 2: \]

\[ f''\left( 2 \right) = 6\left( 2 \right) - 10 = 2 > 0\]

\[\text { So, x = 2 is the point of local minimum }. \]

\[\text { The local minimum value is given by }\]

\[f\left( 2 \right) = \left( 2 - 1 \right) \left( 2 - 2 \right)^2 = 0\]

\[\text { At }x = \frac{4}{3}: \]

\[ f''\left( \frac{4}{3} \right) = 6\left( \frac{4}{3} \right) - 10 = - 2 < 0\]

\[\text { So, x} = \frac{4}{3}\text { is the point of local maximum } . \]

\[\text { The local maximum value is given by }\]

\[f\left( \frac{4}{3} \right) = \left( \frac{4}{3} - 1 \right) \left( \frac{4}{3} - 2 \right)^2 = \frac{1}{3} \times \frac{4}{9} = \frac{4}{27}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.3 | Q 2.1 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

f(x) = | sin 4x+3 | on R ?


f(x) = x\[-\] 1 on R .


f(x) = x\[-\] 3x .


f(x) =  (x \[-\] 1) (x+2)2


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = xex.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


`f(x)=xsqrt(1-x),  x<=1` .


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the maximum value of f(x) = x1/x.


The number which exceeds its square by the greatest possible quantity is _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The minimum value of x loge x is equal to ____________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×