Advertisements
Advertisements
प्रश्न
f(x) = x3 \[-\] 3x .
उत्तर
\[\text { Given: } \hspace{0.167em} f\left( x \right) = \left( x - 5 \right)^4 \]
\[ \Rightarrow f'\left( x \right) = 4 \left( x - 5 \right)^3 \]
\[\text { For a local maximum or a local minimum, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 4 \left( x - 5 \right)^3 = 0\]
\[ \Rightarrow x = 5\]
Since f '(x) changes from negative to positive as x increases through 1, x = 1 is the point of local minima.
The local minimum value of f (x) at x = 1 is given by \[\left( 1 \right)^3 - 3\left( 1 \right) = - 2\]
Since f '(x) changes from positive to negative when x increases through -1, x = -1 is the point of local maxima.
The local maximum value of f (x) at x = -1 is given by \[\left( - 1 \right)^3 - 3\left( - 1 \right) = 2\]
APPEARS IN
संबंधित प्रश्न
f(x)=| x+2 | on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin 2x, 0 < x < \[\pi\] .
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
`f(x) = 2/x - 2/x^2, x>0`
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
The maximum value of x1/x, x > 0 is __________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The minimum value of x loge x is equal to ____________ .
Which of the following graph represents the extreme value:-