English

F(X) = X3 − 3x . - Mathematics

Advertisements
Advertisements

Question

f(x) = x\[-\] 3x .

Sum

Solution

\[\text { Given: } \hspace{0.167em} f\left( x \right) = \left( x - 5 \right)^4 \]

\[ \Rightarrow f'\left( x \right) = 4 \left( x - 5 \right)^3 \]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 4 \left( x - 5 \right)^3 = 0\]

\[ \Rightarrow x = 5\]

Since f '(x) changes from negative to positive as x increases through 1, x = 1 is the point of local minima.
The local minimum value of  f (x) at x = 1 is given by \[\left( 1 \right)^3 - 3\left( 1 \right) = - 2\]

Since f '(x) changes from positive to negative when x increases through -1, x = -1 is the point of local maxima.
The local maximum value of  f (x) at x = -1 is given by \[\left( - 1 \right)^3 - 3\left( - 1 \right) = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.2 | Q 2 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) =  sin x \[-\] cos x, 0 < x < 2\[\pi\] .


f(x) = (x - 1) (x + 2)2.


`f(x) = x/2+2/x, x>0 `.


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


Write sufficient conditions for a point x = c to be a point of local maximum.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×