English

Write the Minimum Value of F(X) = X + 1 X , X > 0 . - Mathematics

Advertisements
Advertisements

Question

Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]

Sum

Solution

\[\text { Given }: \hspace{0.167em} f\left( x \right) = x + \frac{1}{x}\]

\[ \Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}\]

\[\text { For a local maxima or a local minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 1 - \frac{1}{x^2} = 0\]

\[ \Rightarrow x^2 = 1\]

\[ \Rightarrow x = 1, - 1\]

\[\text { But }x > 0\]

\[ \Rightarrow x = 1\]

\[\text { Now,} \]

\[f''\left( x \right) = \frac{1}{x^3}\]

\[\text { At x} = 1: \]

\[f''\left( 1 \right) = \frac{2}{\left( 1 \right)^3} = 2 > 0\]

\[\text { So, x = 1 is a point of local minimum } . \]

\[\text { Thus, the local minimum value is given by }\]

\[f\left( 1 \right) = 1 + \frac{1}{1} = 1 + 1 = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.6 [Page 80]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.6 | Q 4 | Page 80

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x)=sin 2x+5 on R .


f(x)=2x3 +5 on R .


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x\[-\] 1 on R .


f(x) = x\[-\] 3x .


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = (x - 1) (x + 2)2.


f(x) = xex.


f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


Find the maximum and minimum values of y = tan \[x - 2x\] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


Write sufficient conditions for a point x = c to be a point of local maximum.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


The maximum value of x1/x, x > 0 is __________ .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


The minimum value of x loge x is equal to ____________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×