English

The Function F(X) = 5 ∑ R = 1 (X − R)2 Assumes Minimum Value at X = (A) 5 (B) 5 2 (C) 3 (D) 2 - Mathematics

Advertisements
Advertisements

Question

The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .

Options

  • 5

  • `5/2`

  • 3

  • 2

MCQ

Solution

3

 

\[\text { Given:} f\left( x \right) = \sum^5_{r = 1} \left( x - r \right)^2 \]

\[ \Rightarrow f\left( x \right) = \left( x - 1 \right)^2 + \left( x - 2 \right)^2 + \left( x - 3 \right)^2 + \left( x - 4 \right)^2 + \left( x - 5 \right)^2 \]

\[ \Rightarrow f'\left( x \right) = 2\left( x - 1 + x - 2 + x - 3 + x - 4 + x - 5 \right)\]

\[ \Rightarrow f'\left( x \right) = 2\left( 5x - 15 \right)\]

\[\text { For a local maxima and a local minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 2\left( 5x - 15 \right) = 0\]

\[ \Rightarrow 5x - 15 = 0\]

\[ \Rightarrow 5x = 15\]

\[ \Rightarrow x = 3\]

\[\text { Now,} \]

\[f''\left( x \right) = 10\]

\[f''\left( x \right) = 10 > 0\]

\[\text { So, x = 3 is a local minima }. \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.7 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.7 | Q 10 | Page 81

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x)=| x+2 | on R .


f(x)=sin 2x+5 on R .


f(x) = x\[-\] 1 on R .


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = x4 \[-\] 62x2 + 120x + 9.


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = xex.


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.  


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×