English

Find the Point on the Curve X2=8y Which is Nearest to the Point (2,4) ? - Mathematics

Advertisements
Advertisements

Question

Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?

Sum

Solution

\[\text { Let }\left( x, y \right) \text {be nearest to the point } \left( 2, 4 \right) . \text { Then }, \]

\[ x^2 = 8y\]

\[ \Rightarrow y = \frac{x^2}{8} ............\left( 1 \right)\]

\[ d^2 = \left( x - 2 \right)^2 + \left( y - 4 \right)^2 ................\left[ \text {Using distance formula} \right]\]

\[\text { Now,} \]

\[Z = d^2 = \left( x - 2 \right)^2 + \left( y - 4 \right)^2 \]

\[ \Rightarrow Z = \left( x - 2 \right)^2 + \left( \frac{x^2}{8} - 4 \right)^2 .............\left[\text {From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow Z = x^2 + 4 - 4x + \frac{x^4}{64} + 16 - x^2 \]

\[ \Rightarrow \frac{dZ}{dy} = - 4 + \frac{4 x^3}{64}\]

\[\text {For maximum or minimum values of Z, we must have }\]

\[\frac{dZ}{dy} = 0\]

\[ \Rightarrow - 4 + \frac{4 x^3}{64} = 0\]

\[ \Rightarrow \frac{x^3}{16} = 4\]

\[ \Rightarrow x^3 = 64\]

\[ \Rightarrow x = 4\]

\[\text { Substituting the value of x in eq. } \left( 1 \right), \text { we get }\]

\[y = 2\]

\[\text { Now,} \]

\[\frac{d^2 Z}{d y^2} = \frac{12 x^2}{64}\]

\[ \Rightarrow \frac{d^2 Z}{d y^2} = 3 > 0\]

\[\text { So, the nearest point is } \left( 4, 2 \right) .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 31 | Page 74

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x)=2x3 +5 on R .


f(x) =  (x \[-\] 1) (x+2)2


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) = sin 2x, 0 < x < \[\pi\] .


`f(x)=sin2x-x, -pi/2<=x<=pi/2`


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


A particle is moving in a straight line such that its distance at any time t is given by  S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\]  Find when its velocity is maximum and acceleration minimum.


If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


Write the minimum value of f(x) = xx .


The number which exceeds its square by the greatest possible quantity is _________________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×