Advertisements
Advertisements
Question
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Solution
\[\text { Let the surface area of conical tent be S } = \pi r\sqrt{r^2 + h^2}\]
\[\text { Let the volume of the conical tent } V = \frac{1}{3} \pi r^2 h\]
\[ \Rightarrow h = \frac{3V}{\pi r^2}\]
\[ \therefore S = \pi r\sqrt{r^2 + \left( \frac{3V}{\pi r^2} \right)^2}\]
\[ \Rightarrow S = \frac{1}{r}\sqrt{\pi^2 r^6 + 9 V^6}\]
\[\text { Now differentiating with respect to r we get, }\]
\[\frac{dS}{dr} = \frac{d}{dr}\left[ \frac{1}{r}\sqrt{\pi^2 r^6 + 9 V^6} \right]\]
\[ = \frac{1}{r}\frac{6 \pi^2 r^5}{2\left( \sqrt{\pi^2 r^6 + 9 V^6} \right)} - \frac{\sqrt{\pi^2 r^6 + 9 V^6}}{r^2}\]
\[\text { For minima putting }\frac{dS}{dr} = 0 \text { we get, }\]
\[\frac{3 \pi^2 r^4}{\sqrt{\pi^2 r^6 + 9 V^6}} = \frac{\sqrt{\pi^2 r^6 + 9 V^6}}{r^2}\]
\[ \Rightarrow 3 \pi^2 r^6 = \pi^2 r^6 + 9 V^6 \]
\[ \Rightarrow 2 \pi^2 r^6 = 9 V^6 \]
\[\text { Substitutting the value of V we get }, \]
\[2 \pi^2 r^6 = 9 \left( \frac{1}{3} \pi r^2 h \right)^2 \]
\[ \Rightarrow 2 \pi^2 r^6 = \pi^2 r^4 h^2 \]
\[ \Rightarrow 2 r^2 = h^2 \]
\[ \therefore h = \sqrt{2} r\]
APPEARS IN
RELATED QUESTIONS
f(x) = | sin 4x+3 | on R ?
f(x)=2x3 +5 on R .
f (x) = \[-\] | x + 1 | + 3 on R .
f(x) = x3 \[-\] 1 on R .
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = cos x, 0 < x < \[\pi\] .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = (x \[-\] 1) (x \[-\] 2)2.
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
Write the maximum value of f(x) = x1/x.
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .