Advertisements
Advertisements
Question
Write the minimum value of f(x) = xx .
Solution
\[\text { Given: } \hspace{0.167em} f\left( x \right) = x^x \]
\[\text { Taking log on both sides, we get }\]
\[\log f\left( x \right) = x \log x\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{1}{f\left( x \right)} f'\left( x \right) = \log x + 1\]
\[ \Rightarrow f'\left( x \right) = f\left( x \right) \left( \log x + 1 \right)\]
\[ \Rightarrow f'\left( x \right) = x^x \left( \log x + 1 \right) .............. \left( 1 \right)\]
\[\text { For a local maxima or a local minima, we must have } \]
\[f'\left( x \right) = 0\]
\[ \Rightarrow x^x \left( \log x + 1 \right) = 0\]
\[ \Rightarrow \log x = - 1\]
\[ \Rightarrow x = \frac{1}{e}\]
\[\text { Now }, \]
\[f''\left( x \right) = x^x \left( \log x + 1 \right)^2 + x^x \times \frac{1}{x} = x^x \left( \log x + 1 \right)^2 + x^{x - 1} \]
\[\text { At }x = \frac{1}{e}: \]
\[f''\left( \frac{1}{e} \right) = \frac{1}{e}^\frac{1}{e} \left( \log\frac{1}{e} + 1 \right)^2 + \frac{1}{e}^\frac{1}{e} - 1 = \frac{1}{e}^\frac{1}{e} - 1 > 0\]
\[\text { So,} x = \frac{1}{e}\text { is a point of local minimum .} \]
\[\text { Thus, the minimum value is given by }\]
\[f\left( \frac{1}{e} \right) = \frac{1}{e}^\frac{1}{e} = e^\frac{- 1}{e} \]
APPEARS IN
RELATED QUESTIONS
f(x) = 4x2 + 4 on R .
f(x) = - (x-1)2+2 on R ?
f(x)=sin 2x+5 on R .
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = \[\frac{1}{x^2 + 2}\] .
f(x) = x3 \[-\] 6x2 + 9x + 15 .
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) = cos x, 0 < x < \[\pi\] .
Find the point of local maximum or local minimum, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum value, as the case may be:
f(x) = x3(2x \[-\] 1)3.
f(x) = x4 \[-\] 62x2 + 120x + 9.
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
For the function f(x) = \[x + \frac{1}{x}\]
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
If a cone of maximum volume is inscribed in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is ______________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
The minimum value of x loge x is equal to ____________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.