English

Divide 15 into Two Parts Such that the Square of One Multiplied with the Cube of the Other is Minimum. - Mathematics

Advertisements
Advertisements

Question

Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.

Sum

Solution

\[\text { Let the two numbers be x and y. Then },\]

\[x + y = 15 ............. (1)\]

\[\text { Now,} \]

\[ z = x^2 y^3 \]

\[ \Rightarrow z = x^2 \left( 15 - x \right)^3 ............\left[ \text { From eq } . \left( 1 \right) \right]\]

\[ \Rightarrow \frac{dz}{dx} = 2x \left( 15 - x \right)^3 - 3 x^2 \left( 15 - x \right)^2 \]

\[\text { For maximum or minimum values of z, we must have }\]

\[\frac{dz}{dx} = 0\]

\[ \Rightarrow 2x \left( 15 - x \right)^3 - 3 x^2 \left( 15 - x \right)^2 = 0\]

\[ \Rightarrow 2x\left( 15 - x \right) = 3 x^2 \]

\[ \Rightarrow 30x - 2 x^2 = 3 x^2 \]

\[ \Rightarrow 30x = 5 x^2 \]

\[ \Rightarrow x = 6 \text { and }y = 9\]

\[\frac{d^2 z}{d x^2} = 2 \left( 15 - x \right)^3 - 6x \left( 15 - x \right)^2 - 6x \left( 15 - x \right)^2 + 6 x^2 \left( 15 - x \right)\]

\[\text { At x } = 6: \]

\[\frac{d^2 z}{d x^2} = 2 \left( 9 \right)^3 - 36 \left( 9 \right)^2 - 36 \left( 9 \right)^2 + 6\left( 36 \right)\left( 9 \right)\]

\[ \Rightarrow \frac{d^2 z}{d x^2} = - 2430 < 0\]

\[\text { Thus, z is maximum when x = 6 and y = 9 } . \]

\[\text { So, the required two parts into which 15 should be divided are 6 and 9 } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 4 | Page 72

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = (x - 1) (x + 2)2.


f(x) = xex.


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.   


A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.


A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).


Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]


The total cost of producing x radio sets per  day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set  at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


Write necessary condition for a point x = c to be an extreme point of the function f(x).


Write the minimum value of f(x) = xx .


The minimum value of \[\frac{x}{\log_e x}\] is _____________ .


At x= \[\frac{5\pi}{6}\] f(x) = 2 sin 3x + 3 cos 3x is ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .


The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .


If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of  the sum of their volumes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×