Advertisements
Advertisements
Question
Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval } [1, 5]\] ?
Solution
\[\text { Given }: f\left( x \right) = 2 x^3 - 15 x^2 + 36x + 1\]
\[ \Rightarrow f'\left( x \right) = 6 x^2 - 30x + 36\]
\[\text {For a local maximum or a local minimum, we have }\]
\[ f'\left( x \right) = 0\]
\[ \Rightarrow 6 x^2 - 30x + 36 = 0\]
\[ \Rightarrow x^2 - 5x + 6 = 0\]
\[ \Rightarrow \left( x - 3 \right)\left( x - 2 \right) = 0\]
\[ \Rightarrow x = 2 \text{ and }x = 3 \]
\[\text { Thus, the critical points of f are 1, 2, 3 and 5 } . \]
\[\text { Now,} \]
\[f\left( 1 \right) = 2 \left( 1 \right)^3 - 15 \left( 1 \right)^2 + 36\left( 1 \right) + 1 = 24\]
\[f\left( 2 \right) = 2 \left( 2 \right)^3 - 15 \left( 2 \right)^2 + 36\left( 2 \right) + 1 = 29\]
\[f\left( 3 \right) = 2 \left( 3 \right)^3 - 15 \left( 3 \right)^2 + 36\left( 3 \right) + 1 = 28\]
\[f\left( 5 \right) = 2 \left( 5 \right)^3 - 15 \left( 5 \right)^2 + 36\left( 5 \right) + 1 = 56\]
\[\text { Hence, the absolute maximum value when x = 5 is 56 and the absolute minimum value when x = 1 is 24 .} \]
APPEARS IN
RELATED QUESTIONS
f(x) = - (x-1)2+2 on R ?
f(x) = 16x2 \[-\] 16x + 28 on R ?
f(x) = x3 \[-\] 1 on R .
f(x) = x3 \[-\] 3x .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = sin x \[-\] cos x, 0 < x < 2\[\pi\] .
f(x) =\[x\sqrt{1 - x} , x > 0\].
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x4 \[-\] 62x2 + 120x + 9.
f(x) = \[x^3 - 2a x^2 + a^2 x, a > 0, x \in R\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
`f(x)=xsqrt(1-x), x<=1` .
Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?
Prove that f(x) = sinx + \[\sqrt{3}\] cosx has maximum value at x = \[\frac{\pi}{6}\] ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the point on the curvey y2 = 2x which is at a minimum distance from the point (1, 4).
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the minimum value of f(x) = xx .
If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .
The minimum value of \[\frac{x}{\log_e x}\] is _____________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
Which of the following graph represents the extreme value:-