Advertisements
Advertisements
Question
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
Solution
\[\text { Suppose the wire, which is to be made into a square and a circle, is cut into two pieces of length x m and y m, respectively . Then, } \]
\[x + y = 28 . . . \left( 1 \right)\]
\[\text { Perimeter of square }, 4\left( side \right) = x\]
\[ \Rightarrow \text { Side } = \frac{x}{4}\]
\[ \Rightarrow \text { Area of square } = \left( \frac{x}{4} \right)^2 = \frac{x^2}{16}\]
\[\text { Circumference of circle }, 2\pi r = y\]
\[ \Rightarrow r = \frac{y}{2\pi}\]
\[\text { Area of circle =} \pi r^2 = \pi \left( \frac{y}{2\pi} \right)^2 = \frac{y^2}{4\pi}\]
\[\text { Now, }\]
\[z = \text { Area of square + Area of circle }\]
\[ \Rightarrow z = \frac{x^2}{16} + \frac{y^2}{4\pi}\]
\[ \Rightarrow z = \frac{x^2}{16} + \frac{\left( 28 - x \right)^2}{4\pi}\]
\[ \Rightarrow \frac{dz}{dx} = \frac{2x}{16} - \frac{2\left( 28 - x \right)}{4\pi}\]
\[\text { For maximum or minimum values of z, we must have }\]
\[\frac{dz}{dx} = 0\]
\[ \Rightarrow \frac{2x}{16} - \frac{2\left( 28 - x \right)}{4\pi} = 0 .............\left[ \text { From eq }. \left( 1 \right) \right]\]
\[ \Rightarrow \frac{x}{4} = \frac{\left( 28 - x \right)}{\pi}\]
\[ \Rightarrow \frac{x\pi}{4} + x = 28\]
\[ \Rightarrow x\left( \frac{\pi}{4} + 1 \right) = 28\]
\[ \Rightarrow x = \frac{28}{\left( \frac{\pi}{4} + 1 \right)}\]
\[ \Rightarrow x = \frac{112}{\pi + 4}\]
\[ \Rightarrow y = 28 - \frac{112}{\pi + 4} ............\left[ \text { From eq } . \left( 1 \right) \right]\]
\[ \Rightarrow y = \frac{28\pi}{\pi + 4}\]
\[ \frac{d^2 z}{d x^2} = \frac{1}{8} + \frac{1}{2\pi} > 0\]
\[\text { Thus, z is minimum when x } = \frac{112}{\pi + 4} \text { and }y = \frac{28\pi}{\pi + 4} . \]
\[\text { Hence, the length of the two pieces of wire are } \frac{112}{\pi + 4} m \text { and } \frac{28\pi}{\pi + 4} \text { m respectively }.\]
APPEARS IN
RELATED QUESTIONS
f(x) = (x \[-\] 5)4.
f(x) = x3 (x \[-\] 1)2 .
f(x) = (x \[-\] 1) (x+2)2.
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = xex.
`f(x) = x/2+2/x, x>0 `.
f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .
f(x) = (x \[-\] 1) (x \[-\] 2)2.
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .
Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .
Find the point at which M is maximum in a given case.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Find this maximum volume.
A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?
A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?
A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?
Find the maximum slope of the curve y = \[- x^3 + 3 x^2 + 2x - 27 .\]
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
The number which exceeds its square by the greatest possible quantity is _________________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .