Advertisements
Advertisements
Question
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Solution
\[\text { Given }: \hspace{0.167em} s = \frac{t^4}{4} - 2 t^3 + 4 t^2 - 7\]
\[ \Rightarrow v = \frac{ds}{dt} = t^3 - 6 t^2 + 8t\]
\[ \Rightarrow a = \frac{dv}{dt} = 3 t^2 - 12t + 8\]
\[\text { For maximum or minimum values of v, we must have }\]
\[\frac{dv}{dt} = 0\]
\[ \Rightarrow 3 t^2 - 12t + 8 = 0\]
\[\text { On solving the equation, we get }\]
\[t = 2 \pm \frac{2}{\sqrt{3}}\]
\[\text { Now }, \]
\[\frac{d^2 v}{d t^2} = 6t - 12\]
\[\text {At t } = 2 - \frac{2}{\sqrt{3}}: \]
\[\frac{d^2 v}{d t^2} = 6\left( 2 - \frac{2}{\sqrt{3}} \right) - 12\]
\[ \Rightarrow \frac{- 12}{\sqrt{3}} < 0\]
\[\text { So, velocity is maximum at t } = \left( 2 - \frac{2}{\sqrt{3}} \right) . \]
\[\text { Again }, \]
\[\frac{da}{dt} = 6t - 12\]
\[\text { For maximum or minimum values of a, we must have }\]
\[\frac{da}{dt} = 0\]
\[ \Rightarrow 6t - 12 = 0\]
\[ \Rightarrow t = 2\]
\[\text { Now,} \]
\[\frac{d^2 a}{d t^2} = 6 > 0\]
\[\text { So, acceleration is minimum at t }=2.\]
APPEARS IN
RELATED QUESTIONS
f(x) = x3 (x \[-\] 1)2 .
f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .
f(x) = x3\[-\] 6x2 + 9x + 15
f(x) = (x - 1) (x + 2)2.
f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .
Find the point at which M is maximum in a given case.
Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Two sides of a triangle have lengths 'a' and 'b' and the angle between them is \[\theta\]. What value of \[\theta\] will maximize the area of the triangle? Find the maximum area of the triangle also.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
An isosceles triangle of vertical angle 2 \[\theta\] is inscribed in a circle of radius a. Show that the area of the triangle is maximum when \[\theta\] = \[\frac{\pi}{6}\] .
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r.
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.
A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?
The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?
Write necessary condition for a point x = c to be an extreme point of the function f(x).
Write sufficient conditions for a point x = c to be a point of local maximum.
Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
Let f(x) = x3+3x2 \[-\] 9x+2. Then, f(x) has _________________ .
The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The function f(x) = \[\sum^5_{r = 1}\] (x \[-\] r)2 assumes minimum value at x = ______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .
The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.
Which of the following graph represents the extreme value:-