English

Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle. - Mathematics

Advertisements
Advertisements

Question

Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.

Sum

Solution

\[\text { Let the length of a side of the square and radius of the circle be x and r, respectively .} \]

\[\text { It is given that the sum of the perimeters of square and circle is constant .} \]

\[ \Rightarrow 4x + 2\pi r = K .............\left( \text { Where K is some constant } \right)\]

\[ \Rightarrow x = \frac{\left( K - 2\pi r \right)}{4} ........ \left( 1 \right)\]

\[\text { Now,} \]

\[A = x^2 + \pi r^2 \]

\[ \Rightarrow A = \frac{\left( K - 2\pi r \right)^2}{16} + \pi r^2 .............\left[ \text { From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow \frac{dA}{dr} = \frac{\left( K - 2\pi r \right)^2}{16} + \pi r^2 \]

\[ \Rightarrow \frac{dA}{dr} = \frac{2\left( K - 2\pi r \right) - 2\pi}{16} + 2\pi r\]

\[ \Rightarrow \frac{dA}{dr} = \frac{\left( K - 2\pi r \right) - \pi}{4} + 2\pi r\]

\[ \Rightarrow \frac{\left( K - 2\pi r \right) - \pi}{4} + 2\pi r = 0\]

\[ \Rightarrow \frac{\left( K - 2\pi r \right)\pi}{4} = 2\pi r\]

\[ \Rightarrow K - 2\pi r = 8r ............. \left( 2 \right)\]

\[\frac{d^2 A}{d x^2} = \frac{\pi^2}{2} + 2\pi > 0\]

\[\text { So, the sum of the areas, A is least when }K - 2\pi r = 8r . \]

\[\text { From eqs }. \left( 1 \right) \text { and }\left( 2 \right), \text { we get}\]

\[x = \frac{\left( K - 2\pi r \right)}{4}\]

\[ \Rightarrow x = \frac{8r}{4}\]

\[ \Rightarrow x = 2r\]

\[ \therefore\text { Side of the square = Diameter of the circle }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.5 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.5 | Q 9 | Page 72

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = 4x2 + 4 on R .


f(x)=sin 2x+5 on R .


f(x)=2x3 +5 on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = x\[-\] 1 on R .


f(x) = x3  (x \[-\] 1).


f(x) = (x - 1) (x + 2)2.


`f(x) = 2/x - 2/x^2,  x>0`


`f(x) = (x+1) (x+2)^(1/3), x>=-2` .


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]


Find the maximum and minimum values of y = tan \[x - 2x\] .


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi  {cm}^3 .\]


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?


The total area of a page is 150 cm2. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. What must be the dimensions of the page in order that the area of the printed matter may be maximum?


The space s described in time by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.


Write the point where f(x) = x log, x attains minimum value.


Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .


For the function f(x) = \[x + \frac{1}{x}\]


The minimum value of f(x) = \[x4 - x2 - 2x + 6\] is _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×