English

Show that Log X X Has a Maximum Value at X = E ? - Mathematics

Advertisements
Advertisements

Question

Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?

Sum

Solution

\[\text { Here }, \]

\[f\left( x \right) = \frac{\log x}{x}\]

\[ \Rightarrow f'\left( x \right) = \frac{1 - \log x}{x^2}\]

\[\text { For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow \frac{1 - \log x}{x^2} = 0\]

\[ \Rightarrow 1 = \log x\]

\[ \Rightarrow \log e = \log x\]

\[ \Rightarrow x = e\]

\[\text { Now,} \]

\[f''\left( x \right) = \frac{x^2 \left( \frac{- 1}{x} \right) - 2x\left( 1 - \log x \right)}{x^4} = \frac{- 3 + 2 \log x}{x^3}\]

\[ \Rightarrow f''\left( e \right) = \frac{- 3 + 2 \log e}{e^3} = \frac{- 1}{e^3} < 0\]

\[\text { So, x = e is the point of local maximum }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Maxima and Minima - Exercise 18.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 18 Maxima and Minima
Exercise 18.3 | Q 4 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

f(x) = - (x-1)2+2 on R ?


f(x)=| x+2 | on R .


f(x) = x\[-\] 1 on R .


f(x) = \[\frac{1}{x^2 + 2}\] .


f(x) = sin 2x, 0 < x < \[\pi\] .


f(x) =\[\frac{x}{2} + \frac{2}{x} , x > 0\] .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


Find the maximum and minimum values of y = tan \[x - 2x\] .


f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .


Find the absolute maximum and minimum values of a function f given by \[f(x) = 2 x^3 - 15 x^2 + 36x + 1 \text { on the interval }  [1, 5]\] ?

 


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.


Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.


A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimension of the rectangle so that its area is maximum. Find also the area ?


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Find the point on the parabolas x2 = 2y which is closest to the point (0,5) ?


Find the coordinates of a point on the parabola y=x2+7x + 2 which is closest to the strainght line y = 3x \[-\] 3 ?


The number which exceeds its square by the greatest possible quantity is _________________ .


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .


The least value of the function f(x) = \[x3 - 18x2 + 96x\] in the interval [0,9] is _____________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


Let x, y be two variables and x>0, xy=1, then minimum value of x+y is _______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The maximum value of f(x) = \[\frac{x}{4 + x + x^2}\] on [ \[-\] 1,1] is ___________________ .


Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.


Which of the following graph represents the extreme value:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×