Advertisements
Advertisements
Question
f(x) = sin 2x, 0 < x < \[\pi\] .
Solution
\[\text { Given }: \hspace{0.167em} f\left( x \right) = \sin 2x\]
\[ \Rightarrow f'\left( x \right) = 2 \cos 2x\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow 2 \cos 2x = 0\]
\[ \Rightarrow \cos 2x = 0\]
\[ \Rightarrow x = \frac{\pi}{4} or \frac{3\pi}{4}\]
Sincef '(x) changes from positive to negative when x increases through \[\frac{\pi}{4}\], x = \[\frac{\pi}{4}\] is the point of maxima.
The local maximum value of f (x) at x = \[\frac{\pi}{4}\] is given by \[\sin\left( \frac{\pi}{2} \right) = 1\]
Sincef '(x) changes from negative to positive when x increases through
The local minimum value of f (x) at x = \[\frac{3\pi}{4}\] is given by \[\sin\left( \frac{3\pi}{2} \right) = - 1\]
APPEARS IN
RELATED QUESTIONS
f(x)=sin 2x+5 on R .
f(x) = (x \[-\] 5)4.
f(x) = x3 \[-\] 3x .
f(x) = (x \[-\] 1) (x+2)2.
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x)=xsqrt(32-x^2), -5<=x<=5` .
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = 4x \[-\] \[\frac{x^2}{2}\] in [ \[-\] 2,4,5] .
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.
Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m. Find the dimension of the rectangular of the window to admit maximum light through the whole opening.
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Determine the points on the curve x2 = 4y which are nearest to the point (0,5) ?
Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?
The total cost of producing x radio sets per day is Rs \[\left( \frac{x^2}{4} + 35x + 25 \right)\] and the price per set at which they may be sold is Rs. \[\left( 50 - \frac{x}{2} \right) .\] Find the daily output to maximum the total profit.
An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
The strength of a beam varies as the product of its breadth and square of its depth. Find the dimensions of the strongest beam which can be cut from a circular log of radius a ?
A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
Write necessary condition for a point x = c to be an extreme point of the function f(x).
If f(x) attains a local minimum at x = c, then write the values of `f' (c)` and `f'' (c)`.
Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]
Write the point where f(x) = x log, x attains minimum value.
Write the maximum value of f(x) = x1/x.
Write the maximum value of f(x) = \[\frac{\log x}{x}\], if it exists .
The number which exceeds its square by the greatest possible quantity is _________________ .
If x lies in the interval [0,1], then the least value of x2 + x + 1 is _______________ .
If x+y=8, then the maximum value of xy is ____________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .
If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .
The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
Of all the closed right circular cylindrical cans of volume 128π cm3, find the dimensions of the can which has minimum surface area.