हिंदी

F(X) = Sin 2x, 0<X< π . - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = sin 2x, 0 < x < \[\pi\] .

योग

उत्तर

\[\text { Given }: \hspace{0.167em} f\left( x \right) = \sin 2x\]

\[ \Rightarrow f'\left( x \right) = 2 \cos 2x\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 2 \cos 2x = 0\]

\[ \Rightarrow \cos 2x = 0\]

\[ \Rightarrow x = \frac{\pi}{4} or \frac{3\pi}{4}\] 

Sincef '(x) changes from positive to negative when x increases through \[\frac{\pi}{4}\], x = \[\frac{\pi}{4}\] is the point of maxima.
The local maximum value of  f (x) at x = \[\frac{\pi}{4}\] is given by \[\sin\left( \frac{\pi}{2} \right) = 1\] 

Sincef '(x) changes from negative to positive when x increases through

\[\frac{3\pi}{4}\] x = \[\frac{3\pi}{4}\] is the point of minima.
The local minimum value of  f (x) at x = \[\frac{3\pi}{4}\] is given by \[\sin\left( \frac{3\pi}{2} \right) = - 1\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.2 | Q 7 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f (x) = \[-\] | x + 1 | + 3 on R .


f(x) = (x \[-\] 5)4.


f(x) = x\[-\] 3x .


f(x) = x3  (x \[-\] 1).


f(x) =  (x \[-\] 1) (x+2)2


f(x) =  x\[-\] 6x2 + 9x + 15 . 


`f(x)=2sinx-x, -pi/2<=x<=pi/2`


f(x) = x3\[-\] 6x2 + 9x + 15

 


f(x) = (x - 1) (x + 2)2.


`f(x) = x/2+2/x, x>0 `.


`f(x)=xsqrt(32-x^2),  -5<=x<=5` .


f(x) = \[x\sqrt{2 - x^2} - \sqrt{2} \leq x \leq \sqrt{2}\] .


f(x) = \[x + \sqrt{1 - x}, x \leq 1\] .


`f(x)=xsqrt(1-x),  x<=1` .


f(x) = \[- (x - 1 )^3 (x + 1 )^2\] .


The function y = a log x+bx2 + x has extreme values at x=1 and x=2. Find a and b ?


Show that \[\frac{\log x}{x}\] has a maximum value at x = e ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{WL}{2}x - \frac{W}{2} x^2\] .

Find the point at which M is maximum in a given case.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


A closed cylinder has volume 2156 cm3. What will be the radius of its base so that its total surface area is minimum ?


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the point on the curve y2 = 4x which is nearest to the point (2,\[-\] 8).


Write the minimum value of f(x) = \[x + \frac{1}{x}, x > 0 .\]


Write the maximum value of f(x) = \[x + \frac{1}{x}, x > 0 .\] 


Write the minimum value of f(x) = xx .


Write the maximum value of f(x) = x1/x.


Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .


The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


The function f(x) = \[2 x^3 - 15 x^2 + 36x + 4\] is maximum at x = ________________ .


A wire of length 34 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a rectangle whose length is twice its breadth. What should be the lengths of the two pieces, so that the combined area of the square and the rectangle is minimum?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×