हिंदी

Let F(X) = (X − A)2 + (X − B)2 + (X − C)2. Then, F(X) Has a Minimum at X = (A) a + B + C 3 (B) 3 √ a B C (C) 3 1 a + 1 B + 1 C (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .

विकल्प

  • \[\frac{a + b + c}{3}\]

  • \[\sqrt[3]{abc}\]

  • \[\frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}\]

  • none of these

MCQ

उत्तर

\[\frac{a + b + c}{3}\]
 
\[\text { Given }:   f\left( x \right) =    \left( x - a \right)^2  +  \left( x - b \right)^2  +  \left( x - c \right)^2 \] 
\[ \Rightarrow f'\left( x \right) =   2\left( x - a \right) + 2\left( x - b \right) + 2\left( x - c \right)\] 
\[\text { For  a  local  maxima  or  a  local  minima, we  must  have }  \] 
\[f'\left( x \right) = 0\] 
\[ \Rightarrow 2\left( x - a \right) + 2\left( x - b \right) + 2\left( x - c \right) = 0\] 
\[ \Rightarrow 2x - 2a + 2x - 2b + 2x - 2c = 0\] 
\[ \Rightarrow 6x = 2\left( a + b + c \right)\] 
\[ \Rightarrow x = \frac{a + b + c}{3}\] 
\[\text { Now },   \] 
\[f''\left( x \right) = 2 + 2 + 2 = 6 > 0\] 
\[\text { So },   x = \frac{a + b + c}{3} \text {  is  a  local minima. }\] 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Maxima and Minima - Exercise 18.7 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 18 Maxima and Minima
Exercise 18.7 | Q 8 | पृष्ठ ८१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

f(x)=| x+2 | on R .


f(x) = | sin 4x+3 | on R ?


f(x) = 16x2 \[-\] 16x + 28 on R ?


f(x) = x3  (x \[-\] 1).


f(x) =  cos x, 0 < x < \[\pi\] .


f(x) =\[x\sqrt{1 - x} , x > 0\].


f(x) = x4 \[-\] 62x2 + 120x + 9.


`f(x) = 2/x - 2/x^2,  x>0`


f(x) = xex.


f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .


f(x) = (x \[-\] 1) (x \[-\] 2)2.


If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?


f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?


`f(x) = 3x^4 - 8x^3 + 12x^2- 48x + 25 " in "[0,3]` .


Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.


Divide 64 into two parts such that the sum of the cubes of two parts is minimum.


Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, in cutting off squares from each corners and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum possible?


A tank with rectangular base and rectangular sides, open at the top, is to the constructed so that its depth is 2 m and volume is 8 m3. If building of tank cost 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?


Prove that a conical tent of given capacity will require the least amount of  canavas when the height is \[\sqrt{2}\] times the radius of the base.


Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is \[6\sqrt{3}\]r. 


Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .


Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?


Manufacturer can sell x items at a price of rupees \[\left( 5 - \frac{x}{100} \right)\] each. The cost price is Rs  \[\left( \frac{x}{5} + 500 \right) .\] Find the number of items he should sell to earn maximum profit.

 


A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?


A straight line is drawn through a given point P(1,4). Determine the least value of the sum of the intercepts on the coordinate axes ?


Write the maximum value of f(x) = x1/x.


The maximum value of x1/x, x > 0 is __________ .


If \[ax + \frac{b}{x} \frac{>}{} c\] for all positive x where a,b,>0, then _______________ .


For the function f(x) = \[x + \frac{1}{x}\]


The number which exceeds its square by the greatest possible quantity is _________________ .


The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .


If x+y=8, then the maximum value of xy is ____________ .


The minimum value of \[\left( x^2 + \frac{250}{x} \right)\] is __________ .


If(x) = \[\frac{1}{4x^2 + 2x + 1}\] then its maximum value is _________________ .


f(x) = 1+2 sin x+3 cos2x, `0<=x<=(2pi)/3` is ________________ .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×