Advertisements
Advertisements
प्रश्न
f(x) = cos x, 0 < x < \[\pi\] .
उत्तर
\[\text { Given: } \hspace{0.167em} f\left( x \right) = \cos x\]
\[ \Rightarrow f'\left( x \right) = - \sin x\]
\[\text { For a local maximum or a local minimum, we must have }\]
\[f'\left( x \right) = 0\]
\[ \Rightarrow - \sin x = 0\]
\[ \Rightarrow \sin x = 0\]
\[ \Rightarrow x = 0 \ or \ \pi\]
Since \[0 < x < \pi\] none is in the interval \[\left( 0, \pi \right)\] .
APPEARS IN
संबंधित प्रश्न
f(x) = | sin 4x+3 | on R ?
f(x) = x3 \[-\] 1 on R .
f(x) = x3 \[-\] 3x .
`f(x)=sin2x-x, -pi/2<=x<=pi/2`
`f(x)=2sinx-x, -pi/2<=x<=pi/2`
f(x) = x3\[-\] 6x2 + 9x + 15
`f(x) = x/2+2/x, x>0 `.
f(x) = \[x + \frac{a2}{x}, a > 0,\] , x ≠ 0 .
Find the maximum and minimum values of the function f(x) = \[\frac{4}{x + 2} + x .\]
If f(x) = x3 + ax2 + bx + c has a maximum at x = \[-\] 1 and minimum at x = 3. Determine a, b and c ?
f(x) = (x \[-\] 1)2 + 3 in [ \[-\] 3,1] ?
Find the maximum value of 2x3\[-\] 24x + 107 in the interval [1,3]. Find the maximum value of the same function in [ \[-\] 3, \[-\] 1].
Find the absolute maximum and minimum values of the function of given by \[f(x) = \cos^2 x + \sin x, x \in [0, \pi]\] .
How should we choose two numbers, each greater than or equal to `-2, `whose sum______________ so that the sum of the first and the cube of the second is minimum?
Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]
Prove that a conical tent of given capacity will require the least amount of canavas when the height is \[\sqrt{2}\] times the radius of the base.
Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides ?
Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius \[5\sqrt{3 cm} \text { is }500 \pi {cm}^3 .\]
Show that among all positive numbers x and y with x2 + y2 =r2, the sum x+y is largest when x=y=r \[\sqrt{2}\] .
The space s described in time t by a particle moving in a straight line is given by S = \[t5 - 40 t^3 + 30 t^2 + 80t - 250 .\] Find the minimum value of acceleration.
A particle is moving in a straight line such that its distance at any time t is given by S = \[\frac{t^4}{4} - 2 t^3 + 4 t^2 - 7 .\] Find when its velocity is maximum and acceleration minimum.
Write the point where f(x) = x log, x attains minimum value.
Find the least value of f(x) = \[ax + \frac{b}{x}\], where a > 0, b > 0 and x > 0 .
Write the maximum value of f(x) = x1/x.
The maximum value of x1/x, x > 0 is __________ .
Let f(x) = (x \[-\] a)2 + (x \[-\] b)2 + (x \[-\] c)2. Then, f(x) has a minimum at x = _____________ .
The sum of two non-zero numbers is 8, the minimum value of the sum of the reciprocals is ______________ .
The maximum value of f(x) = \[\frac{x}{4 - x + x^2}\] on [ \[-\] 1, 1] is _______________ .
The point on the curve y2 = 4x which is nearest to, the point (2,1) is _______________ .
The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are ___________ .
f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .
If(x) = x+\[\frac{1}{x}\],x > 0, then its greatest value is _______________ .
Let f(x) = 2x3\[-\] 3x2\[-\] 12x + 5 on [ 2, 4]. The relative maximum occurs at x = ______________ .
The minimum value of x loge x is equal to ____________ .
The sum of the surface areas of a cuboid with sides x, 2x and \[\frac{x}{3}\] and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
The minimum value of the function `f(x)=2x^3-21x^2+36x-20` is ______________ .
Which of the following graph represents the extreme value:-